光学学报, 2024, 44 (6): 0601008, 网络出版: 2024-03-19  

不稳定分层海洋湍流对厄米-高斯光通信系统的影响

Effects of Unstable Stratified Ocean Turbulence on Hermite-Gaussian Optical Communication System
丁桂璇 1,2杜星 1,2杜浩 1,3,*王生 1,2敖磊 1李崔春 1
作者单位
1 中国科学院空天信息创新研究院,北京 100094
2 中国科学院大学,北京 100049
3 海南空天信息研究院海南省地球观测重点实验室,海南 文昌 571300
摘要
推导了不稳定分层海洋湍流下厄米-高斯光束闪烁指数的理论公式,以及考虑海洋湍流和瞄准误差综合影响下UWOC系统信道系数的概率分布函数,进一步推导了系统主要性能参数即误码率、信道容量和中断概率的理论计算公式,并采用高斯-厄米正交积分近似方法求得3个性能参数的闭合表达式,仿真分析了不稳定分层和稳定分层湍流情况下,光束模数、传输距离、海洋湍流参数和瞄准误差对系统的平均误码率、平均信道容量和中断概率的影响。结果表明:相比于稳定分层,不稳定分层的系统计算误差更小;当盐度波动占主导时,系统性能更好;随着均方温度耗散率增大、湍流动能耗散率减小、瞄准误差增大,系统信道容量减小,中断概率增大。本研究结果可为厄米-高斯光在水下光通信领域的应用提供参考。
Abstract
Objective

Underwater wireless optical communication (UWOC) has caught much attention due to its wide frequency band, high information capacity, and fast data transmission rate. However, ocean turbulence causes light intensity scintillation during beam propagation, which increases the difficulty of optical signal resolution in UWOC systems. During establishing underwater optical communication links, Hermite-Gaussian (HG) beams can help to improve system performance by reducing scintillation. Most of the performance studies on current HG UWOC systems employ stable stratification turbulent power spectra, whose computational accuracy cannot match unstable stratification cases. Additionally, current research on UWOC is at the level where the system pointing error must be considered, but this aspect is not addressed in the study of the HG UWOC. According to the literature findings, the study of average bit error rate (BER), average channel capacity, and outage probability of UWOC systems based on unstable stratified ocean turbulence and HG beam pointing error is not reported. Therefore, we investigate the performance of the HG beam wireless optical communication system under unstable stratified ocean turbulence.

Methods

We derive the theoretical formulae for the HG optical scintillation index under unstable stratified ocean turbulence and the probability distribution function of the channel coefficients of UWOC systems considering the combined effects of ocean turbulence and pointing error. Meanwhile, theoretical formulae for the main performance parameters of the system are derived, including BER, channel capacity, and outage probability. Additionally, we derive the closed-form expressions for these three performance parameters using the Gaussian-Hermite orthogonal integral approximation method, thus conducting an in-depth analysis of the system performance. To more comprehensively evaluate the system performance in different conditions, we perform simulations to analyze the effects of beam modulus, transmission distance, ocean turbulence, and pointing error on the average BER, average channel capacity, and outage probability of the system under unstable stratification and stable stratification turbulence.

Results and Discussions

We investigate the performance of HG beam wireless optical communication system under unstable stratified ocean turbulence. The results show that the system BER can be reduced by decreasing the beam width, the HG beam width is reduced from 0.05 m to 0.01 m at an SNR of 30 dB, and the average BER is reduced from 6.18×10-7 to 2.0×10-8. The increase in transmission distance results in the rising system BER. Additionally, we compare the differences in the effects of system performance on unstable stratification and stable stratification turbulence. It is found that the average BER for the stable stratification case in temperature-induced ocean turbulence is much lower than the average BER for the unstable stratification case. Since the eddy thermal diffusivity of seawater should be greater than the salt diffusivity in a temperature-induced ocean environment, the stable stratification assumption underestimates the ocean turbulence intensity. The system performance in the unstable stratification case is better when induced by salinity. Under the stable stratification assumption, the average channel capacity can be close to 0 in certain conditions to prevent reliable communication. In contrast, the average channel capacity in the unstable stratification case is greater than that in the stable stratification case. Meanwhile, the increase in the mean square temperature dissipation rate and the decrease in the turbulent kinetic energy dissipation rate per unit mass of fluid lead to decreased average channel capacity and increased outage probability. This indicates turbulence intensity increase, thus causing deteriorated system performance. Finally, as the variance of the pointing error increases, the light intensity at the receiver end becomes weaker and cannot meet the requirements of the resolved signals, with degraded system performance.

Conclusions

We investigate the performance of a wireless optical communication system using the HG beam under unstable stratified ocean turbulence. Meanwhile, The closed-form expressions for the scintillation index of the HG beams and the average BER, average channel capacity, and outage probability of the optical communication system which take into account the pointing error are derived from the power spectra of the unstable stratified ocean turbulence. The simulations analyze the effects of beam modulus, transmission distance, ocean turbulence, and pointing errors on the system performance. The results show that the unstable stratification theory can correct the bias of ocean turbulence intensity caused by the stable stratification assumption, and then reduce the calculation errors of BER, channel capacity, and outage probability of the UWOC system, and have better system performance in the salinity-induced cases. Additionally, the increasing mean square temperature dissipation rate leads to a decreasing turbulent kinetic energy dissipation rate per unit mass of fluid, rising pointing error, reducing system channel capacity, and increasing outage probability. The results have implications and significance for studying underwater optical communications.

丁桂璇, 杜星, 杜浩, 王生, 敖磊, 李崔春. 不稳定分层海洋湍流对厄米-高斯光通信系统的影响[J]. 光学学报, 2024, 44(6): 0601008. Guixuan Ding, Xing Du, Hao Du, Sheng Wang, Lei Ao, Cuichun Li. Effects of Unstable Stratified Ocean Turbulence on Hermite-Gaussian Optical Communication System[J]. Acta Optica Sinica, 2024, 44(6): 0601008.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!