光学学报, 2024, 44 (6): 0601008, 网络出版: 2024-03-19  

不稳定分层海洋湍流对厄米-高斯光通信系统的影响

Effects of Unstable Stratified Ocean Turbulence on Hermite-Gaussian Optical Communication System
丁桂璇 1,2杜星 1,2杜浩 1,3,*王生 1,2敖磊 1李崔春 1
作者单位
1 中国科学院空天信息创新研究院,北京 100094
2 中国科学院大学,北京 100049
3 海南空天信息研究院海南省地球观测重点实验室,海南 文昌 571300
摘要
推导了不稳定分层海洋湍流下厄米-高斯光束闪烁指数的理论公式,以及考虑海洋湍流和瞄准误差综合影响下UWOC系统信道系数的概率分布函数,进一步推导了系统主要性能参数即误码率、信道容量和中断概率的理论计算公式,并采用高斯-厄米正交积分近似方法求得3个性能参数的闭合表达式,仿真分析了不稳定分层和稳定分层湍流情况下,光束模数、传输距离、海洋湍流参数和瞄准误差对系统的平均误码率、平均信道容量和中断概率的影响。结果表明:相比于稳定分层,不稳定分层的系统计算误差更小;当盐度波动占主导时,系统性能更好;随着均方温度耗散率增大、湍流动能耗散率减小、瞄准误差增大,系统信道容量减小,中断概率增大。本研究结果可为厄米-高斯光在水下光通信领域的应用提供参考。
Abstract
Objective

Underwater wireless optical communication (UWOC) has caught much attention due to its wide frequency band, high information capacity, and fast data transmission rate. However, ocean turbulence causes light intensity scintillation during beam propagation, which increases the difficulty of optical signal resolution in UWOC systems. During establishing underwater optical communication links, Hermite-Gaussian (HG) beams can help to improve system performance by reducing scintillation. Most of the performance studies on current HG UWOC systems employ stable stratification turbulent power spectra, whose computational accuracy cannot match unstable stratification cases. Additionally, current research on UWOC is at the level where the system pointing error must be considered, but this aspect is not addressed in the study of the HG UWOC. According to the literature findings, the study of average bit error rate (BER), average channel capacity, and outage probability of UWOC systems based on unstable stratified ocean turbulence and HG beam pointing error is not reported. Therefore, we investigate the performance of the HG beam wireless optical communication system under unstable stratified ocean turbulence.

Methods

We derive the theoretical formulae for the HG optical scintillation index under unstable stratified ocean turbulence and the probability distribution function of the channel coefficients of UWOC systems considering the combined effects of ocean turbulence and pointing error. Meanwhile, theoretical formulae for the main performance parameters of the system are derived, including BER, channel capacity, and outage probability. Additionally, we derive the closed-form expressions for these three performance parameters using the Gaussian-Hermite orthogonal integral approximation method, thus conducting an in-depth analysis of the system performance. To more comprehensively evaluate the system performance in different conditions, we perform simulations to analyze the effects of beam modulus, transmission distance, ocean turbulence, and pointing error on the average BER, average channel capacity, and outage probability of the system under unstable stratification and stable stratification turbulence.

Results and Discussions

We investigate the performance of HG beam wireless optical communication system under unstable stratified ocean turbulence. The results show that the system BER can be reduced by decreasing the beam width, the HG beam width is reduced from 0.05 m to 0.01 m at an SNR of 30 dB, and the average BER is reduced from 6.18×10-7 to 2.0×10-8. The increase in transmission distance results in the rising system BER. Additionally, we compare the differences in the effects of system performance on unstable stratification and stable stratification turbulence. It is found that the average BER for the stable stratification case in temperature-induced ocean turbulence is much lower than the average BER for the unstable stratification case. Since the eddy thermal diffusivity of seawater should be greater than the salt diffusivity in a temperature-induced ocean environment, the stable stratification assumption underestimates the ocean turbulence intensity. The system performance in the unstable stratification case is better when induced by salinity. Under the stable stratification assumption, the average channel capacity can be close to 0 in certain conditions to prevent reliable communication. In contrast, the average channel capacity in the unstable stratification case is greater than that in the stable stratification case. Meanwhile, the increase in the mean square temperature dissipation rate and the decrease in the turbulent kinetic energy dissipation rate per unit mass of fluid lead to decreased average channel capacity and increased outage probability. This indicates turbulence intensity increase, thus causing deteriorated system performance. Finally, as the variance of the pointing error increases, the light intensity at the receiver end becomes weaker and cannot meet the requirements of the resolved signals, with degraded system performance.

Conclusions

We investigate the performance of a wireless optical communication system using the HG beam under unstable stratified ocean turbulence. Meanwhile, The closed-form expressions for the scintillation index of the HG beams and the average BER, average channel capacity, and outage probability of the optical communication system which take into account the pointing error are derived from the power spectra of the unstable stratified ocean turbulence. The simulations analyze the effects of beam modulus, transmission distance, ocean turbulence, and pointing errors on the system performance. The results show that the unstable stratification theory can correct the bias of ocean turbulence intensity caused by the stable stratification assumption, and then reduce the calculation errors of BER, channel capacity, and outage probability of the UWOC system, and have better system performance in the salinity-induced cases. Additionally, the increasing mean square temperature dissipation rate leads to a decreasing turbulent kinetic energy dissipation rate per unit mass of fluid, rising pointing error, reducing system channel capacity, and increasing outage probability. The results have implications and significance for studying underwater optical communications.

1 引言

随着海洋探索和研究活动日渐深入,对水下无线通信的需求持续增加。现阶段水下无线通信技术包括声波通信、电磁波通信和无线光通信1。与前两者相比,水下无线光通信(UWOC)具有频带宽、信息容量大、数据传输速率快、延迟小、能耗低等优点2-4。文献[5]中进行的实地演示证明了UWOC的发展潜力。

海洋湍流导致光束的传播出现光强波动现象,该现象被称为光强闪烁,这会增大UWOC系统解析光信号的难度。研究人员分析了不同类型光束在海洋湍流中的传播效果,其中包括椭圆涡旋光束6、部分相干环状偏心光束7和高斯阵列光束8等。此外,厄米-高斯(HG)光束模型也受到了关注9-12。陈斐楠等10研究了HG光束的M2因子在海洋湍流中的变化情况。杜星等11建立了海洋湍流中HG光束的强度分析模型,仿真分析了湍流参数对均方束腰宽、瑞利区间和湍流距离的影响。Baykal12指出,在设计水平水下光学无线通信链路时,HG光束可以通过减弱闪烁来提高系统性能。近年来,海洋湍流信道中光通信系统的性能也得到了广泛研究。Zou等13研究了部分相干高斯波束在弱海洋湍流无线光通信系统中的平均信道容量。傅玉青等14分析了强海洋湍流效应和瞄准误差对UWOC系统的平均误码率和中断概率的影响。Lin等15推导了考虑Málaga海洋湍流和瞄准误差的UWOC系统中平均信道容量的闭合表达式,证明了湍流衰落参数对系统性能有显著影响。目前对于瞄准误差层面的研究以高斯光束模型为主,而针对HG光束的UWOC模型精度有显著偏差。Kiasaleh16通过泰勒级数近似研究了较小的瞄准误差对HG光束在自由空间平均辐照度分布的影响。Liu等17使用统计平均方法推导了任意瞄准误差下HG光束的平均辐照度表达式,并研究了HG光束的传输特性、平均接收功率和信噪比损耗。

理论分析UWOC性能需要依据海洋湍流的空间功率谱,目前大量的研究使用Nikishov等18提出的湍流功率谱,它基于海水涡流热扩散率KT和盐度扩散率KS相等的稳定分层假设。事实上,风力扰动和大气热交换的影响会使海水呈现不稳定分层的特性19,中高纬度的海洋地区也往往不存在稳定的分层20。为了消除稳定分层假设引起的误差,Elamassie等21将文献[18]的空间功率谱从稳定分层扩展到不稳定分层。基于不稳定分层的理论,研究人员分析了平面波21、球面波22、高斯光23及反常涡旋光束24的性能。与不稳定分层相比,当海洋湍流处于由盐度驱动的稳定分层时,系统性能被显著低估;由温度驱动时,系统性能则被高估。Li等25建立了HG光束通过不稳定分层海洋湍流传输时信号和串扰测量概率模型。根据文献调研结果,基于不稳定分层海洋湍流和HG光束瞄准误差的UWOC系统的平均误码率、平均信道容量和中断概率的研究鲜见报道。

本文推导了不稳定分层海洋湍流情况下HG光束的闪烁指数表达式,分析了使用HG光束传输时UWOC系统的性能;仿真研究了UWOC的平均误码率、信道容量和中断概率与海洋湍流参数、HG光束参数以及瞄准误差的关系,指出它们在不稳定分层和稳定分层情况下的差别,并在不稳定分层理论中通过改变涡流扩散率修正了稳定分层假设导致的理论计算误差。

2 理论分析

2.1 HG光束的闪烁指数

计算HG光束在海洋湍流中的闪烁指数,需要获得其在源平面的光场分布26,即

u(s)=Hn(sx /αs)Hm(sy /αs)exp-αs-2(sx2+sy2)2

式中:αss=(sx,sy)分别为光束的束宽和源平面上的矢量坐标;Hn()Hm()为厄米多项式;nm表示x方向和y方向的HG光束的模数,n=m=0时的光束为高斯光束。

在弱湍流环境中,闪烁指数σI2可以近似表示为σI2=4Bχ,其中Bχ为对数振幅方差,表征光波在海洋湍流传播时的光强起伏。将HG光束的对应参数代入到基于Rytov方法推导的Bχ,得到对应的闪烁指数27

σI2=4π[Hn(0)Hm(0)]2Re0Ldς0κdκ02πdθY(ς,κ,θ,L)Y(ς,-κ,θ,L)+|Y(ς,κ,θ,L)|2Φn(κ)

式中:Re表示对积分式取实部;k=2π/λ为波数,其中λ为光波长;L为光束的传输距离;ς为沿传播轴的距离;κθ为二维空间频率的幅度和相位;Φn(κ)表示海洋湍流介质中折射率波动的空间功率谱。

Y(ς,κ,θ,L)=ikexp-0.5i(L-ς)(kαs2+iς)κ2k(kαs2+iL)Hnαs(ς-L)kαs2-iLκcos θ×Hmαs(ς-L)kαs2-iLκsin θ

为了消除稳定分层假设带来的误差,采用Elamassie等21提出的不稳定分层海洋湍流功率谱模型:

Φn(κ)=(4πk2)-1C0α2χTω2ε-13κ-531+C1κη23× ω2e-ATδ+dre-ASδ-ω(dr+1)e-ATSδ

式中:a=2.6×10-4 L/°C0=0.72C1=2.35AT=C0C1-2PT-1AS=C0C1-2PS-1ATS=0.5C0C1-2PTS-1PTPS分别表示温度和盐度的普朗特数;PTS=2PTPS/(PT+PS)δ=8.284κη4/3+12.978κη2η为Kolmogorov微尺度,取值范围为6×10-5~0.01 m;ε为湍流动能耗散率,从浅海碎浪区到深海区域ε的取值为10-1~10-10 m2·s-3χT为均方温度耗散率,取值范围为10-4~10-10 K2·s-1,当其大于10-5 K2·s-1时,水域为强分层;ω为温度诱致与盐度诱致的比值,其取值范围为-5~0,ω趋近-5表示湍流以温度诱致为主,趋近0时表示湍流以盐度诱致为主;海水湍流的涡流扩散率drKSKT的比值23,通常表示为

      dr=KSKT=ωRF=     1/1-ω-1/ω,ω11.85ω-0.85,0.5ω10.15ω,ω0.5

式中:RF为涡流通量比。当dr=1时,式(4)变为稳定分层的海洋湍流功率谱。

2.2 HG光UWOC系统的性能

衡量UWOC系统性能的重要指标包括平均误码率、信道容量和中断概率。水下环境复杂,UWOC系统受到海洋湍流效应和瞄准误差的影响,信道系数h将包含两个分量,即

h=hahp

式中:ha为海洋湍流导致的信号衰落;hp为瞄准误差导致的信道衰减。下面将分别介绍这两个分量。

海洋湍流导致的信号衰落影响通信性能。采用对数正态的分布统计模型来表征光信号衰落ha在接收端的概率分布函数,即

fhaha=1ha2πσI2exp-lnha+σI2/222σI2

在UWOC系统中,湍流和海水流动引起HG光束的中心在接收平面上随机移动,将导致瞄准误差。瞄准误差的随机变化不可避免地影响HG光束的光强分布,HG光束的光强会随着瞄准误差的增大而减小,进而降低UWOC系统的信噪比。在本研究中,瞄准误差导致的信道衰减hp

hp=us,LPEus,L

式中:us,LPE表示接收端存在瞄准误差时HG光束的平均光强,s为接收平面的xy方向的坐标;us,L表示未发生瞄准误差的平均光强。二者的具体表达式可以参考文献[17]。以HG光束x方向的模数为2(即n=2)为例,us,LPE的计算公式为

                   us,LPE=4αs0αr2+4σr29/2exp-2s2αr2+4σr2αr8+8αr6(-s2+σr2)+16αr4(s4+2s2σr2+3σr4)+                                               256αr2σr4(s2+σr2)+512σr8,                                                                                                                      (9)

式中:αr为光束在接收平面的束宽;σr为瞄准误差的标准方差,其中σr=0表示不存在瞄准误差。

综合考虑海洋湍流和瞄准误差的影响,可得到信道系数h的概率分布函数为

fhh=1h2πσI2exp-lnh/hp+σI2/222σI2

下面,将基于式(10)和OOK调制公式推导平均误码率、信道容量和中断概率的闭合表达式,为开展UWOC系统性能仿真提供理论方法。

2.2.1 平均误码率

UWOC系统在信道h状态下使用OOK调制的条件错误概率28

pheh=Q2PthRσn=12erfcPthRσn

式中:Pt为激光发射功率;R为探测器灵敏度;σn为加性高斯白噪声的均方差;平均信噪比(SNR)为γ¯=2Pt2R2/σn2Q为高斯Q函数;erfc为误差补函数,Qx=12erfcx2

HG光信号经过对数正态分布的海洋湍流传播,在接收端的平均误码率(BER)可以表示为

Pbe=0fhhphehdh=0Qγ¯h1h2πσI2×      exp-lnh/hp+σI2/222σI2dh

应用式(13)的高斯-厄米正交积分近似方法29,对式(12)进行变换,得到平均误码率的闭合表达式如式(14)所示。

-fxexp-x2dxi=1nwifxiPbe=1πi=1nwiQγ¯hpexp2σIxi-12σI2

2.2.2 平均信道容量

利用一定容量的通信信道传输信息时,所能达到的最高信息传输速率30

C=0Blog21+h2γ¯fhhdh

式中:B为带宽;h2γ¯表示接收机收到的瞬时信噪比。同样利用式(13)式(15)进行变换,得到信道容量的闭合表达式为

C=Bπi=1nwilog21+exp22σIxi-σI2γ¯hp

式中:C/B表示为平均信道容量。

2.2.3 中断概率

中断概率是通信系统在传输过程中发生中断的概率。具体来说,在发送数据的过程中,由信道噪声、干扰、衰落等导致数据无法被接收而中断的概率。中断概率的表达式31

      Pout=P2Pt2h2R2σn2μth=phμthσn22Pt2R2=          0Ufhhdh

式中:μth为信噪比阈值;U=μthσn22Pt2R2=μthγ¯为归一化判决阈值。上述的积分式可以近似表示为

Pout=1-12erfclnU/hp+12σI22σI

3 数值仿真

本节将对第2节中推导的不稳定分层海洋湍流中HG光UWOC系统性能的理论公式进行仿真验证。假定沿水平方向传播的HG UWOC链路的仿真计算参数为:激光波长为532 nm、束宽αs=0.01 m、水平传输距离为35 m。仿真所使用的湍流参数数值除特别说明外,采用以下数值:PT=7PS=700η=0.01 mε=10-2 m2s-3χT=3.2×10-7 K2s-1ω=-1.5

3.1 平均误码率

图1所示为在不同束宽和传输距离下HG光UWOC的平均误码率与平均SNR的关系。随着平均SNR的增加,平均误码率降低。图1(a)对比了HG光UWOC[(2,2)模式]与高斯光UWOC[(0,0)模式]在束宽为0.01、0.03、0.05 m时误码率的差别。在这3种取值情况下,高斯光通信系统的误码率始终高于HG光通信系统的误码率。减小HG光束的束宽可显著降低UWOC系统的误码率。当SNR为30 dB时,束宽为0.01 m的HG光相比于高斯光的系统误码率降低了两个量级;HG光束的束宽从0.05 m降到0.01 m,平均误码率由6.18×10-7降低到2.0×10-8图1(b)展示了传输距离对于系统误码率的影响。随着传输距离的增加,系统的误码率增大,当距离超过70 m,且SNR小于30 dB时,平均误码率维持在10-1量级的水平。这是因为HG光束在海洋湍流中传播时,其闪烁指数与传输距离呈正相关,在达到一定的传输距离后,光强闪烁出现饱和现象,导致信道出现强衰落,通信链路中断。因此,为了提高UWOC系统的通信性能,可通过提高系统信噪比来提高系统的通信质量。

图 1. 平均误码率与平均信噪比的关系。(a)不同束宽和光束模数;(b)不同传输距离

Fig. 1. Relationship of average SNR and average BER. (a) Different beam widths and beam modulus; (b) different transmission distances

下载图片 查看所有图片

图2重点对比了在不稳定分层与稳定分层两种情况下温度诱致与盐度诱致的比值ω对平均BER的影响。为了比较海洋湍流中以盐度波动为主导和以温度波动为主导的差别,取ω的值分别为-0.25、-0.85、-1、-2.5和-4,利用式(5)计算出不稳定分层条件下的涡流扩散率dr为0.038、0.720、1.000、4.430和7.460;按照稳定分层的假设,对应的涡流扩散率均为1。图2(a)展示了不稳定分层条件下的结果,图2(b)则展示了对应稳定分层下的结果。从二者的比较可以看出,稳定分层假设对于BER的计算存在偏差。当ω>1时,相同的SNR对应稳定分层情况下的平均BER远小于不稳定分层情况下的平均BER。这说明在以温度波动为主的海洋环境中,海水的涡流热扩散率应大于盐扩散率,即涡流扩散率dr>1,稳定分层假设低估了海洋湍流的强度,致使HG光束的闪烁指数被低估,平均BER计算的数值也相应变小。当ω<1时,稳定分层假设高估了以盐度波动为主的海洋湍流的强度,致使此时的系统BER大于不稳定分层条件下的系统BER。这也意味着,相同条件下,海洋湍流呈现不稳定分层特性时的UWOC系统性能要优于稳定分层。

图 2. 两种情况下ω对平均BER的影响。(a)不稳定分层情况;(b)稳定分层情况

Fig. 2. Effect of ω on average BER under two conditions. (a) Unstable stratification; (b) stable stratification

下载图片 查看所有图片

3.2 平均信道容量

图3展示了HG光UWOC系统平均信道容量与海洋湍流的关系。均方温度耗散率χT增大,平均信道容量降低;湍流动能耗散率ε减小,平均信道容量也会降低。这是因为χT增大或ε减小意味着湍流强度增大,故系统的性能降低。图3(a)表明:高斯光束的束宽增加,其平均信道容量增大;HG光束的束宽增加,其平均信道容量减小。平均信道容量随HG光束的模数增加而增大,(2,2)模式的HG光束性能优于(0,4)模式,这对UWOC系统设计中光束选择有一定的实际意义。图3(b)进一步表明,不稳定分层和稳定分层情况下的湍流动能耗散率存在差异。随着ω的增大,平均信道容量总体呈下降趋势,这是因为dr存在分段的情况,ω-1,-0.5区间时,不稳定分层条件下信道容量有所提升。稳定分层假设高估了盐度波动占主导的海洋湍流强度,导致在ω大于-0.5时,平均信道容量接近0,系统无法进行可靠通信,而不稳定分层情况下的平均信道容量要大于稳定分层情况。此外,随着ε减小,固定ω值对应的稳定分层与不稳定分层的信道容量差值增大,这是由湍流增强导致的。

图 3. 平均信道容量与海洋湍流参数的关系。(a)均方温度耗散率;(b)湍流动能耗散率

Fig. 3. Relationship between average channel capacity and ocean turbulence parameters. (a) Mean square temperature dissipation rate; (b) turbulent kinetic energy dissipation rate

下载图片 查看所有图片

图4所示为存在瞄准误差的情况下,UWOC系统平均信道容量的变化情况。可以看出,随着瞄准误差的方差增大,平均信道容量减小,当信噪比为30 dB时,瞄准误差的方差从0增大到20 μrad,平均信道容量从9.85 bits-1Hz-1减低到8.36 bits-1Hz-1。瞄准误差的增大,意味着接收端的光强减弱,无法满足解析信号的要求,使得平均信道容量减小,系统性能变差。

图 4. 平均信道容量与瞄准误差的关系

Fig. 4. Relationship between average channel capacity and pointing error

下载图片 查看所有图片

3.3 中断概率

图5所示为不稳定分层和稳定分层情况下UWOC系统中断概率随归一化判决阈值U的变化。随着U的增加,中断概率也会增加。在盐度波动占主导的稳定分层的海洋湍流(ω趋近于0)中,中断概率始终为1。在温度波动占主导的海洋湍流中,当U为0时,中断概率接近1,稳定分层情况下,中断概率的变化呈现“断崖式”上升趋势,而不稳定分层的变化相对缓和。这是因为不稳定分层理论会根据ω取值的变化修正涡流扩散率,使得海洋湍流强度变化不如稳定分层情况那样剧烈。

图 5. 归一化判决阈值U与中断概率的关系。(a)不稳定分层;(b)稳定分层

Fig. 5. Relationship between normalized decision threshold and outage probability. (a) Unstable stratification; (b) stable stratification

下载图片 查看所有图片

图6所示为海洋湍流参数和瞄准误差对系统中断概率的影响。与图3的结果类似,不论是否存在瞄准误差,均方温度耗散率χT增大,湍流动能耗散率ε减小,导致湍流强度增加,中断概率随之增大。而在同一判决阈值U下,相比于不存在瞄准误差的情况,UWOC系统的中断概率在存在瞄准误差时要高得多。瞄准误差增加5 μrad,UWOC系统的归一化判决阈值需要减小5 dB左右才能达到相同的中断概率。

图 6. 海洋湍流参数和瞄准误差对系统中断概率的影响。(a)均方温度耗散率;(b)湍流动能耗散率

Fig. 6. Effect of ocean turbulence parameters and pointing error on outage probability. (a) Mean square temperature dissipation rate; (b) turbulent kinetic energy dissipation rate

下载图片 查看所有图片

4 结论

研究了不稳定分层海洋湍流下HG光束无线光通信系统的性能。根据不稳定分层海洋湍流功率谱推导出HG光束的闪烁指数表达式与考虑瞄准误差的光通信系统的平均误码率、平均信道容量和中断概率的闭合表达式。仿真分析了光束模数、传输距离、海洋湍流和瞄准误差对系统性能的影响。结果表明,不稳定分层理论可以修正稳定分层假设导致的海洋湍流强度偏差(低估以温度波动为主的海洋湍流强度,高估以盐度波动为主的海洋湍流强度),进而减小UWOC系统的误码率、信道容量和中断概率的计算误差,在以盐度波动为主的情况下系统有更好的性能。此外,瞄准误差的存在降低了UWOC系统性能。本研究的结论对水下光通信的研究有一定的意义和价值。

参考文献

[1] 曾凤娇, 杨康建, 晏旭, 等. 水下激光通信系统研究进展[J]. 激光与光电子学进展, 2021, 58(3): 0300002.

    Zeng F J, Yang K J, Yan X, et al. Research progress on underwater laser communication systems[J]. Laser & Optoelectronics Progress, 2021, 58(3): 0300002.

[2] Mohammed A S, Adnan S A, Ali A A M, et al. Underwater wireless optical communications links: perspectives, challenges and recent trends[J]. Journal of Optical Communications, 2022: 0063.

[3] 石佳, 黄爱萍, 陶林伟. 深度学习辅助水下光通信信道估计和信号检测[J]. 中国激光, 2022, 49(17): 1706004.

    Shi J, Huang A P, Tao L W. Deep learning aided channel estimation and signal detection for underwater optical communication[J]. Chinese Journal of Lasers, 2022, 49(17): 1706004.

[4] 季秀阳, 殷洪玺, 景连友, 等. 基于强波动理论的强湍流信道水下无线光通信系统性能分析[J]. 光学学报, 2022, 42(18): 1801001.

    Ji X Y, Yin H X, Jing L Y, et al. Performance analysis of underwater wireless optical communication system with strong turbulence channels based on strong fluctuation theory[J]. Acta Optica Sinica, 2022, 42(18): 1801001.

[5] Sun X B, Kong M W, Alkhazragi O A, et al. Field demonstrations of wide-beam optical communications through water-air interface[J]. IEEE Access, 2020, 8: 160480-160489.

[6] 卢腾飞, 张凯宁, 吴志军, 等. 椭圆涡旋光束在海洋湍流中的传输特性[J]. 中国光学, 2020, 13(2): 323-332.

    Lu T F, Zhang K N, Wu Z J, et al. Propagation properties of elliptical vortex beams in turbulent ocean[J]. Chinese Optics, 2020, 13(2): 323-332.

[7] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性[J]. 物理学报, 2015, 64(20): 204206.

    Yang T, Ji X L, Li X Q. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence[J]. Acta Physica Sinica, 2015, 64(20): 204206.

[8] 牛超君, 卢芳, 韩香娥. 相位屏法模拟高斯阵列光束海洋湍流传输特性[J]. 光学学报, 2018, 38(6): 0601004.

    Niu C J, Lu F, Han X E. Propagation properties of Gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 2018, 38(6): 0601004.

[9] Young C Y, Gilchrest Y V, Macon B. Turbulence induced beam spreading of higher order mode optical waves[J]. Optical Engineering, 2002, 41(5): 1097-1103.

[10] 陈斐楠, 陈延如, 赵琦, 等. 部分相干厄米高斯光束在海洋湍流中光束传输质量的变化[J]. 中国激光, 2013, 40(4): 0413002.

    Chen F N, Chen Y R, Zhao Q, et al. Change of propagation quality factor of partially coherence Hermite-Gaussian beams traveling through oceanic turbulence[J]. Chinese Journal of Lasers, 2013, 40(4): 0413002.

[11] 杜星, 丁桂璇, 杜浩, 等. 海洋湍流中厄米-高斯光束的传输特性研究[J]. 光学学报, 2023, 43(24): 2401003.

    Du X, Ding G X, Du H, et al. Transmission characteristics of Hermite-Gaussian beam in oceanic turbulence[J]. Acta Optica Sinica, 2023, 43(24): 2401003.

[12] Baykal Y. Higher order mode laser beam scintillations in oceanic medium[J]. Waves in Random and Complex Media, 2016, 26(1): 21-29.

[13] Zou Z X, Wang P, Chen W W, et al. Average capacity of a UWOC system with partially coherent Gaussian beams propagating in weak oceanic turbulence[J]. Journal of the Optical Society of America A, 2019, 36(9): 1463-1473.

[14] 傅玉青, 段琦, 周林. Gamma Gamma强海洋湍流和瞄准误差下水下无线光通信系统的性能研究[J]. 红外与激光工程, 2020, 49(2): 0203013.

    Fu Y Q, Duan Q, Zhou L. Performance of underwater wireless optical communication system in Gamma Gamma strong oceanic turbulence with pointing error[J]. Infrared and Laser Engineering, 2020, 49(2): 0203013.

[15] Lin Z R, Xu G J, Zhang Q Y, et al. Average symbol error probability and channel capacity of the underwater wireless optical communication systems over oceanic turbulence with pointing error impairments[J]. Optics Express, 2022, 30(9): 15327-15343.

[16] Kiasaleh K. Hybrid ARQ communications for severely degraded Hermite-Gaussian FSO link[J]. Proceedings of SPIE, 2017, 10562: 105622R.

[17] Liu X, Jiang D G, Zhang Y, et al. Propagation characteristics of Hermite-Gaussian beam under pointing error in free space[J]. Photonics, 2022, 9(7): 478.

[18] Nikishov V V, Nikishov V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1): 82-98.

[19] MamaevO I. Temperature-salinity analysis of world ocean waters[M]. Amsterdam: Elsevier, 1975.

[20] EinseleG. Sedimentary basins: evolution, facies, and sediment budget[M]. 2nd ed. Berlin: Springer, 2000.

[21] Elamassie M, Uysal M, Baykal Y, et al. Effect of eddy diffusivity ratio on underwater optical scintillation index[J]. Journal of the Optical Society of America A, 2017, 34(11): 1969-1973.

[22] 吴彤. 海洋湍流中光波Rytov方差及光波和自适应光学成像系统特征参量研究[D]. 成都: 四川师范大学, 2019.

    WuT. Study on Rytov variance of light wave and characteristic parameters of light wave and adaptive optical imaging system in ocean turbulence[D]. Chengdu: Sichuan Normal University, 2019.

[23] Li Y, Zhang Y X, Zhu Y. Oceanic spectrum of unstable stratification turbulence with outer scale and scintillation index of Gaussian-beam wave[J]. Optics Express, 2019, 27(5): 7656-7672.

[24] 张艺伟, 王明军. 反常涡旋光束在分层海洋湍流中的光强和相位特性研究[J]. 激光杂志, 2022, 43(6): 13-18.

    Zhang Y W, Wang M J. Intensity and phase characteristics of anomalous vortex beams in stratified ocean turbulence[J]. Laser Journal, 2022, 43(6): 13-18.

[25] Li Y, Xie Y Q, Li B L. Probability of orbital angular momentum for square Hermite-Gaussian vortex pulsed beam in oceanic turbulence channel[J]. Results in Physics, 2021, 28: 104590.

[26] Sayan Ö F, Gerçekcioğlu H, Baykal Y. Hermite Gaussian beam scintillations in weak atmospheric turbulence for aerial vehicle laser communications[J]. Optics Communications, 2020, 458: 124735.

[27] Baykal Y. Formulation of correlations for general-type beams in atmospheric turbulence[J]. Journal of the Optical Society of America A, 2006, 23(4): 889-893.

[28] Sandalidis H G, Tsiftsis T A, Karagiannidis G K, et al. BER performance of FSO links over strong atmospheric turbulence channels with pointing errors[J]. IEEE Communications Letters, 2008, 12(1): 44-46.

[29] Abramowitz M, Stegun I A, Miller D. Handbook of mathematical functions with formulas, graphs and mathematical tables (national bureau of standards applied mathematics series No. 55)[J]. Journal of Applied Mechanics, 1965, 32(1): 239.

[30] Liu C, Yao Y, Sun Y X, et al. Average capacity optimization in free-space optical communication system over atmospheric turbulence channels with pointing errors[J]. Optics Letters, 2010, 35(19): 3171-3173.

[31] Kaur P, Jain V K, Kar S. Performance of free space optical links in presence of turbulence, pointing errors and adverse weather conditions[J]. Optical and Quantum Electronics, 2016, 48(1): 65.

丁桂璇, 杜星, 杜浩, 王生, 敖磊, 李崔春. 不稳定分层海洋湍流对厄米-高斯光通信系统的影响[J]. 光学学报, 2024, 44(6): 0601008. Guixuan Ding, Xing Du, Hao Du, Sheng Wang, Lei Ao, Cuichun Li. Effects of Unstable Stratified Ocean Turbulence on Hermite-Gaussian Optical Communication System[J]. Acta Optica Sinica, 2024, 44(6): 0601008.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!