丁桂璇 1,2杜星 1,2杜浩 1,3,*王生 1,2[ ... ]李崔春 1
作者单位
摘要
1 中国科学院空天信息创新研究院,北京 100094
2 中国科学院大学,北京 100049
3 海南空天信息研究院海南省地球观测重点实验室,海南 文昌 571300
推导了不稳定分层海洋湍流下厄米-高斯光束闪烁指数的理论公式,以及考虑海洋湍流和瞄准误差综合影响下UWOC系统信道系数的概率分布函数,进一步推导了系统主要性能参数即误码率、信道容量和中断概率的理论计算公式,并采用高斯-厄米正交积分近似方法求得3个性能参数的闭合表达式,仿真分析了不稳定分层和稳定分层湍流情况下,光束模数、传输距离、海洋湍流参数和瞄准误差对系统的平均误码率、平均信道容量和中断概率的影响。结果表明:相比于稳定分层,不稳定分层的系统计算误差更小;当盐度波动占主导时,系统性能更好;随着均方温度耗散率增大、湍流动能耗散率减小、瞄准误差增大,系统信道容量减小,中断概率增大。本研究结果可为厄米-高斯光在水下光通信领域的应用提供参考。
海洋光学 厄米-高斯光束 不稳定分层 海洋湍流 水下光通信 
光学学报
2024, 44(6): 0601008
黄明阳 1,2,3,4许守彦 1,2齐欣 1,2王生 1,2,3,4
作者单位
摘要
1 中国科学院 高能物理研究所,北京 100049
2 散裂中子源科学中心,广东 东莞 523803
3 中国科学院大学,北京 100049
4 中国科学院 粒子加速物理与技术重点实验室,北京 100049
引出系统是中国散裂中子源快循环同步加速器的核心组成部分,对束流精确打靶和加速器稳定运行具有重要意义。首先,详细介绍了快循环同步加速器的引出系统和束流引出方案,重点介绍了一些引出系统相关的关键技术。其次,对引出束流调试进行深入研究,包括纵向束流调试、横向束流调试、引出束流分布优化等,其中纵向束流调试主要针对8个引出Kicker定时进行精确标定,横向束流调试主要指Lambertson型磁铁、8个Kicker磁铁、高能输运线模式的匹配设置。最后,对引出束流束损进行深入研究和针对性优化,探索引出束流损失的各种来源,对Lambertson型磁铁漏场、引出束团长度、Kicker波形平顶、Kicker波形变化进行深入研究并对一些新的测量方法进行详细论述。同时,对Lambertson型磁铁入口产生超大辐射热点的现象进行深入研究,寻找其产生大量束流损失的根源,并提出最终解决方案,降低引出束流损失和辐射剂量,使其满足加速器运行要求。
散裂中子源 束流引出 束流调试 束流损失 辐射剂量 spallation neutron source beam extraction beam commissioning beam loss radiation dose 
强激光与粒子束
2023, 35(12): 124001
杜星 1,2丁桂璇 1,2杜浩 1,3,*王生 1,2冯慧 1,3
作者单位
摘要
1 中国科学院空天信息创新研究院,北京 101408
2 中国科学院大学,北京 100049
3 海南空天信息研究院海南省地球观测重点实验室,海南 文昌 571300
研究了海洋湍流中部分相干厄米-高斯光束的传输特性。首先,根据广义惠更斯-菲涅耳原理,建立了海洋湍流中厄米-高斯光束的强度分析模型。然后,推导了海洋湍流中厄米-高斯光束的均方束腰宽、瑞利区间和湍流距离的表达式。最后,对海洋湍流中厄米-高斯光束的均方束腰宽、瑞利区间和湍流距离进行仿真分析。仿真结果表明,均方束腰宽随着均方温度耗散率和温度与盐度相对参数的增大而增加,随着湍流动能耗散率的增大而减小。此外,瑞利区间和湍流距离都随着厄米-高斯光束的阶数的增加而增大。该研究可以为水下光通信研究提供理论依据。
水下光通信 厄米-高斯光束 海洋湍流 传输特性 
光学学报
2023, 43(24): 2401003
孟才 1,2曹建社 1,2何大勇 1,2何平 1,2[ ... ]潘卫民 1,2,*
作者单位
摘要
1 中国科学院 高能物理研究所,北京 100049
2 中国科学院大学,北京 100049
高能同步辐射光源(HEPS)是中国第一台第四代高能同步辐射光源,其加速器由直线加速器、增强器、储存环及输运线组成。报道了HEPS直线加速器的初期束流调试重要进展。HEPS直线加速器是一台500 MeV S波段常温直线加速器,由热阴极电子枪、聚束系统、主直线加速器构成。在按时完成设备加工、安装和老练的基础上,于2023年3月9日启动束流调试,当天实现束流全线贯通。3月14日束流能量达到500 MeV,束团电荷量达到2.5 nC。经过测量,直线加速器出口束流能散0.4%,能量稳定度0.06%,水平和垂直几何发射度分别为233 nm和145 nm。目前直线加速器束团电荷量可达到7.0 nC,相关束流调试正在进行。
HEPS直线加速器 高能同步辐射光源 束流调试 束流能量 束团电荷量 HEPS Linac High Energy Photon Source beam commissioning beam energy bunch charge 
强激光与粒子束
2023, 35(5): 054001
周文中 1,2,3潘卫民 1,3,*葛锐 1,3贺斐思 1[ ... ]王生 1,2,3
作者单位
摘要
1 中国科学院 高能物理研究所,北京 100049
2 散裂中子源科学中心,广东 东莞 523803
3 中国科学院大学,北京 100049
中国散裂中子源是中国第一台、世界第四台脉冲型散裂中子源,其已于2020年2月达到100 kW功率的设计指标,运行稳定高效,供束效率位于国际前列。中国散裂中子源二期升级方案中总束流功率将升级到500 kW,其中直线加速器段将采用超导加速腔结构,束流能量由80 MeV提高到300 MeV。其中在80~165 MeV能量段采用324 MHz双spoke超导腔,在165~300 MeV能量段采用648 MHz 6-cell椭球超导腔。采用CST、COMSOL等仿真软件完成324 MHz双spoke超导腔的电磁、机械设计及优化,达到实际运行指标要求。为了提高腔运行的稳定性,在腔的设计中对EP/Eacc着重进行了优化,使其尽量降低。
双spoke超导腔 氦压灵敏度 洛伦兹力失谐 二次电子倍增 调谐灵敏度 double spoke resonator pressure sensitivity Lorentz force detuning multipacting tuning sensitivity 
强激光与粒子束
2023, 35(3): 034004
万金宇 1,2孙正 1,2张相 1,2白宇 1,2[ ... ]张成艺 1,2
作者单位
摘要
1 中国科学院 高能物理研究所,北京 100049
2 中国科学院大学,北京 100049
3 华中科技大学 电气与电子工程学院,武汉 430074
4 南京大学 现代工程与应用科学学院,南京 210023
5 北京大学 重离子物理研究所&核物理与核技术国家重点实验室,北京 100871
6 中国科学院 上海高等研究院,上海 201204
7 散裂中子源科学中心,广东 东莞 523803
机器学习技术在近十几年发展迅猛,并被广泛地用于解决复杂的科学和工程问题。最近十年间,基于机器学习的粒子加速器相关研究也开始呈现出井喷式发展趋势。国际上许多加速器实验室开始尝试用机器学习和大数据技术处理加速器中的海量复杂数据,以期解决加速器及其子系统中的诸多物理和技术问题。不过,迄今为止,机器学习在加速器中的应用仍处于初步探索阶段,不同机器学习算法在解决具体加速器问题的效果及其适用范围尚待摸索,机器学习在实际加速器中的应用仍非常有限。因此,有必要对加速器领域中的机器学习研究做一个整体回顾和总结。将回顾机器学习在大型粒子加速器(以储存环加速器和直线加速器为主)中的加速器技术、束流物理以及加速器整体性能优化等研究方向中已取得的研究成果,并探讨机器学习在加速器领域的未来发展方向和应用前景。
机器学习 粒子加速器 大科学装置 大数据 加速器技术 束流物理 machine learning particle accelerator large scientific facilities big data accelerator technology beam physics 
强激光与粒子束
2021, 33(9): 094001
作者单位
摘要
中国科学院 高能物理研究所, 北京 100049
中国散裂中子源(CSNS)快循环同步加速器(RCS)把能量为80 MeV的束流储存并加速到1.6 GeV然后引出到靶站。为了减少RCS中的束流损失, 有必要对RCS做色品校正, 并减小动量偏移对束流光学的影响。尝试了多种色品校正方案并对不同色品校正方案做了比较。用三维跟踪程序SIMPSONS研究了色品校正六极铁与空间电荷效应对束流的影响。色品校正六极铁可以有效减小色品引起的频散, 但是由于六极铁为非线性元件, 导致不同振幅的粒子间有一定频散。模拟发现同时存在空间电荷效应和色品校正六极铁时, 会有少量的束流损失。
色品校正 空间电荷效应 六极磁铁 CSNS/RCS CSNS/RCS chromatic correction space charge effects sextupoles 
强激光与粒子束
2013, 25(3): 746
作者单位
摘要
中国科学院 高能物理研究所, 北京 100049
中国散裂中子源(CSNS)的快循环同步加速器(RCS)是一台强流质子加速器,其束流平均功率达到100 kW。在此强流加速器中,真空部件的阻抗是引起束流不稳定的主要原因,它严重限制了束流强度及品质。对CSNS/RCS设计中的各种真空部件阻抗进行了详细计算,并以计算结果为出发点,理论分析了各种不稳定性强弱,确定了各种不稳定性发生的阻抗阈值,为真空部件结构设计提供了参考。对比较严重的电阻壁阻抗,采用阻抗壁尾场模型进行跟踪模拟,得到不稳定性增长率与理论计算值符合较好。自然色品有助于束流稳定,加入自然色品后模拟,电阻壁不稳定性消失。
中国散裂中子源 快循环同步加速器 阻抗 不稳定性 阻抗壁 China Spallation Neutron Source rapid cycling synchrotron impedance instability resistive wall 
强激光与粒子束
2013, 25(2): 465

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!