光子学报, 2016, 45 (9): 0912005, 网络出版: 2016-10-19  

一种基于空间光程差调制的条纹位置测量方法

Fringe Position Measurement Based on Spatial Optical Path Difference Modulation
孙长胜 1,2,3,*朱永田 1,2胡中文 1,2徐腾 1,2梅蓉 1,2,3
作者单位
1 中国科学院国家天文台南京天文光学技术研究所,南京210042
2 中国科学院天文光学技术重点实验室,南京210042
3 中国科学院大学,北京100049
摘要
提出了一种基于空间光程差调制的条纹位置测量方法, 用于恒星干涉仪条纹搜寻和条纹追踪.来自基线两端的两光束合束时, 通过合束器在两光束之间引入一个倾角, 用以实现静态的空间光程差调制.使用成像透镜将静态光程差调制得到的白光干涉条纹成像到CCD探测器上.白光条纹位置的偏移与两光束之间的光程差大小相关, 使用获得的干涉条纹实时计算白光条纹位置, 测量出两束光之间的光程差, 用于延迟线的实时光程差补偿, 从而可以稳定干涉条纹.数值模拟和实验结果表明, 采用该方法获得的最大光程差测量误差为0.159 μm, 小于数值模拟和实验所用宽带光的平均波长0.555 μm, 测量精度满足条纹相干的要求.与时间调制方法相比, 该方法原理和算法简单, 且对于大气扰动更不敏感.
Abstract
A fringe position measurement method is proposed based on the spatial optical path difference modulation, which is applicable to fringe searching and fringe tracking. When combining the two beams from the two ends of a baseline, a static optical path difference modulation is brought in by a beam combiner introducing tilt angle. An imaging lens is used to image the interferogram onto a CCD detector. The translation of the white-light fringe packet is related to the optical path difference between the two combined beams. The position of interference fringe can be computed with the acquired fringe and used to calculate the path difference. The evaluated optical path difference value is further used to cancel the path difference error by the delay line and to stabilize the fringe. The numerical simulation and experimental results indicate that the maximum experimental measurement error is 0.159 μm, which is smaller than the average wavelength 0.555 μm of the broadband light used in the research, the proposed method can achieve the accuracy that meets the requirement of fringe coherencing . Compared with the previous temporal optical path difference modulation method, the proposed method is simple in principle and algorithm implementation, moreover insensitive to atmospheric turbulence.
参考文献

[1] 王海涛, 蔡佳慧, 魏鹏,等. 即时/准即时u-v覆盖的光学综合孔径成像分析[J]. 光子学报, 2010, 39(2): 260-265.

    WANG Hai-tao, CAI Jia-hui, WEI Peng, et al. Imaging analysis of optical synthetic aperture system with the immediate/para-immediate u-v coverage[J]. Acta Photonica Sinica, 2010, 39(2): 260-265.

[2] SHAO M, COLAVITA M M, HINES B E, et al. The Mark III stellar interferometer[J]. Astronomy and Astrophysics, 1988, 193: 357-371.

[3] ROBERTSON J G, IRELAND M J, TANGO W J, et al. Science and technology progress at the Sydney University Stellar Interferometer[C]. SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, 2012: 84450N.

[4] COLAVITA M M,WIZINOWICH P L, AKESON R L, et al. The Keck interferometer[J]. Astronomical Society of the Pacific, 2013, 125(932): 1226.

[5] GLINDEMANN A, ABUTER R, CARBOGNANI F, et al. The VLT interferometer: A unique instrument for high-resolution astronomy[C]. Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2000: 2-12.

[6] CORCIONE L, BONINO D, BUSHER D F, et al. Fringe tracker for the VLTI spectro-imager[C]. SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, 2008: 701345.

[7] GLINDEMANN A. Instrumental techniques[M]. Principles of Stellar Interferometry. Springer Berlin Heidelberg, 2011: 217-274.

[8] MOREL S, TRAUB W A, BREGMAN J D, et al. Fringe-tracking experiments at the IOTA interferometer[C]. Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2000: 506-513.

[9] GAI M, CORCIONE L, DELATGE L, et al. The FINITO fringe sensor for VLTI[C].European Southern Observatory Conference and Workshop Proceedings. 2002, 58: 329.

[10] KERVELLA P, SéGRANSAN D, du FORESTO V C. Data reduction methods for single-mode optical interferometry-application to the VLTI two-telescopes beam combiner VINCI[J]. Astronomy & Astrophysics, 2004, 425(3): 1161-1174.

[11] LEVEQUE S A, WILHELM R, SALVADé Y, et al. Toward nanometer accuracy laser metrology for phase-referenced interferometry with the VLTI[C]. Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2003: 983-994.

[12] LAWSON P R. Phase and group delay estimation[C].Principles of Long Baseline Stellar Interferometry. 2000: 113.

[13] GAI M, MENARDI S, CESARE S, et al. The vlti fringe sensors: FINITO and prima FSU[C].SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, 2004: 528-539.

[14] BLIND N, ABSIL O, LE BOUQUIN J B, et al. Optimized fringe sensors for the VLTI next generation instruments[J]. Astronomy & Astrophysics, 2011, 530: A121.

[15] 陆艺, 范伟军, 孔明. 恒星光干涉仪主动镜偏转角的检测[J]. 光子学报, 2010, 39(6): 1111-1115.

    LU Yi, FAN Wei-jun, KONG Ming. Measuring the tip-tilt angles of the active mirror in the stellar interferometer[J]. Acta Photonica Sinica, 2010, 39(6): 1111-1115.

孙长胜, 朱永田, 胡中文, 徐腾, 梅蓉. 一种基于空间光程差调制的条纹位置测量方法[J]. 光子学报, 2016, 45(9): 0912005. SUN Chang-Sheng, ZHU Yong-Tian, HU Zhong-Wen, XU Teng, MEI Rong. Fringe Position Measurement Based on Spatial Optical Path Difference Modulation[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0912005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!