新其其格 1,2,3陈忆 1,2,*季杭馨 1,2王磊 1,2[ ... ]章华涛 1,2
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所,南京 210042
2 中国科学院天文光学技术重点实验室(南京天文光学技术研究所),南京 210042
3 中国科学院大学,北京 100049
以K镜消旋系统为例,针对光机结构中多误差源耦合和误差分配的问题,采用蒙特卡洛算法进行误差分解,并提出了类粒子群优化算法,对误差源进行智能误差分配,以指导工程化的加工公差分配和结构优化极限。首先,对一套悬臂式K镜消旋系统的光机结构引起的消旋指向精度进行误差来源分析;然后,通过蒙特卡洛算法结合粒子群优化方法对误差源进行智能分配,指导K镜关键零部件的优化设计和公差分配;最后,分别利用光机耦合仿真分析法和实验装调法对设计的K镜消旋系统进行消旋指向精度分析。结果显示,仿真分析获得消旋指向精度为6.95'',实验装调最优消旋指向精度为14.24'',验证了光机结构设计方案及其误差分配方案的可行性。
误差分配 光机结构 消旋系统 耦合分析 蒙特卡洛 类粒子群优化 K镜 Error allocation Optical-mechanical structure Racemization system Coupling analysis Monate Carlo Particle swarm optimization K-mirror 
光子学报
2022, 51(3): 0322002
韩建 1,2,*姜明达 1,2张凯 1,2肖东 1,2朱永田 1,2
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院天文光学技术重点实验室(南京天文光学技术研究所), 江苏 南京 210042
阶梯光栅共相拼接技术是实现增大光栅尺寸、进一步提高天文光谱分辨率(天文光谱分辨率R>10 5)的关键。为了提高中阶梯拼接光栅的调整角度精度,本文基于干涉条纹傅里叶分析,提出了一种干涉条纹空间载频频率的九像素平均算法;然后结合干涉条纹光栅拼接技术,模拟了不同角度偏差下的条纹变化及其相应的傅里叶分析角度计算,在实验上实现了对系统角度调整系数的标定以及对傅里叶算法计算的调整偏角精度的分析,获得了拼接光栅调整系统中角度最大计算误差精度小于0.4 μrad的结果,为天文上应用的大尺寸拼接光栅的共相调节提供了理论支持。
相干光学 拼接光栅 傅里叶变换 共相调节 调整精度 
中国激光
2021, 48(3): 0311001
季杭馨 1,2,3,*朱永田 1,2胡中文 1,2
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
建立了基于边界限制的宽波段高效率多通道光谱仪快速设计的分析模型,讨论了多通道光谱仪的性能要求、初始结构参数、项目成本、风险之间的相互关系。该模型能够根据给定的系统指标快速计算出多通道光谱仪各子系统的结构参数,能在项目初期对方案的可行性和项目预算给出合理的评估。以4 m级望远镜为平台,设计了基于体位全息光栅的多通道光谱仪,光谱范围为350~1000 nm,每个通道在闪耀波长处的分辨率为5000,光谱仪本体峰值效率大于53%,全工作波段单色像质能量集中度在80%处优于15 μm,满足系统的性能要求。
光学设计 光谱仪 体位全息光栅 极大望远镜 
光学学报
2019, 39(3): 0330003
张天一 1,2,3,*侯永辉 1,2,3徐腾 1,2姜海娇 1,2[ ... ]朱永田 1,2,3
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
为了提高LAMOST-HRS(Large Sky Area Multi-Object Fiber Spectroscopy Telescope-High Resolution Spectrograph)光谱分辨率以及光谱仪效率, 并建立一套可在仪器概念设计阶段分析杂散光的方法, 开展了在不进行BSDF测量的前提下, 对系统杂散光建模、分析的研究。首先根据粗糙度测量数据计算关键参数, 构建Harvey散射模型。接着通过显微镜观察光学面, 由MATLAB进行图像处理获取最大颗粒直径, 构建颗粒污染散射模型。然后导入光谱仪镀膜、光学元件、机械结构。对机械结构进行简化以提高分析效率。最后预估杂散光背景, 分析杂散光路径与组成。结果表明, LAMOST-HRS杂散光主要由光学面散射引起, 杂散辐射率为2.55%, 信噪比为16.01 dB, 达到设计指标要求。
光学工程 杂散辐射率 杂散光分析 散射 表面粗糙度 颗粒测量 optical engineering stray radiation rate stray light analysis scattering surface roughness particle measurement 
红外与激光工程
2019, 48(1): 0117003
张天一 1,2,3,*朱永田 1,2,3侯永辉 1,2,3张凯 1,2[ ... ]姜明达 1,2
作者单位
摘要
1 中国科学院 国家天文台 南京天文光学技术研究所, 南京 210042
2 中国科学院 天文光学技术重点实验室, 南京 210042
3 中国科学院大学, 北京 100049
为了充分利用LAMOST望远镜, 实现对银河系不同星族的分布与整体性研究, 以及极端贫金属星元素丰度测定等科学目标, 研制了LAMOST高分辨率光谱仪, 光谱分辨率R≥30 000, 光谱覆盖范围380~740 nm。在充分考虑台址因素与现有条件后, 采用中继倍率07倍的准白瞳设计方案, 使用大芯径光纤、拼接大光栅、棱栅组合式横向色散器、缝前像切分器等措施来满足性能要求。进行了效率估算与杂散光分析, 光谱仪本体效率峰值大于30%, 杂散光照度占CCD总照度的255%, 信噪比为1601 dB。试运行阶段实测了太阳光谱, 温度稳定性达到±003 ℃, 光谱仪效率峰值约为335%, 满足稳定、高效的运行要求。
光谱仪 分辨率 通光效率 杂散光 spectrograph resolution light efficiency stray light 
中国光学
2019, 12(1): 148
武中华 1,2,3,*袁吕军 1,2朱永田 1,2何丽 1,2
作者单位
摘要
1 中国科学院 国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院 天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
针对快焦比特大非球面度离轴非球面反射镜, 设计了3片式Offner补偿器。为应对3片式补偿器对中心偏差及镜间隔严格的公差要求, 设计了相应的补偿器镜筒结构。该结构使透镜中心倾斜及平移调整相分离, 实现补偿器的高精度装调。根据中心偏差测量仪的测量结果, 2片补偿镜之间倾斜误差44″, 平移误差35 μm, 镜间隔误差38 μm; 补偿镜组与场镜之间倾斜误差53″, 平移误差42 μm, 镜间隔误差72 μm, 满足检测使用要求。利用该补偿器及4D动态干涉仪对精抛光阶段的离轴非球面进行检测, 面形结果PVq值达到0135λ, RMS值达到0019 5λ, 优于设计要求。
光学检测 离轴非球面 零位补偿器 镜筒结构设计 补偿器装调 optical testing off-axis aspherical surface null compensator design of barrel structure assembling of compensator 
应用光学
2017, 38(4): 639
孙长胜 1,2,3,*朱永田 1,2胡中文 1,2徐腾 1,2吴桢 1,2
作者单位
摘要
1 中国科学院国家天文台 南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院 天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
提出一种基于改进空间频率域(UV)采样的阵列评价函数, 用于长基线天文光干涉望远镜阵列几何结构的优化。该评价函数将UV采样区域沿径向和角度方向分别进行划分, 统计划分所得区域中UV采样点数目并计算UV采样点密度, 以UV采样点密度偏离理想高斯分布的大小作为评价依据。在具体的优化技术上, 利用遗传算法的全局收敛特性, 降低了传统算法对初始结构的依赖, 采用该评价函数对6孔径望远镜阵列进行优化设计, 并与国际主流天文光干涉阵列CHARA进行了性能对比。分析结果表明: 优化所得Array-6阵列UV采样点密度分布具有径向连续覆盖和低频强调的特点, 有利于对轮廓信息的恢复; 双星模拟成像实验中Array-6阵列重构图像相对于原始图像的误差为21.34, 相比CHARA阵列降低了18.16%, 具有更高的成像质量。该优化算法具备优化大孔径数目阵列的能力, 对于射电波段望远镜阵列的优化设计亦有一定的参考意义。
合成孔径 阵列优化 遗传算法 评价函数 synthetic apertures array optimization genetic algorithms merit function 
应用光学
2017, 38(4): 555
武中华 1,2,3,*袁吕军 1,2朱永田 1,2何丽 1,2[ ... ]孔维斌 1,2
作者单位
摘要
1 中国科学院国家天文台 南京天文光学技术研究所, 南京 210042
2 中国科学院天文光学技术重点实验室, 南京 210042
3 中国科学院大学, 北京 100049
基于付科法的离轴非球面波面再现检测技术, 通过对付科检测过程的数学分析, 建立了离轴非球面波面再现的数学模型, 提出了波面整合算法, 通过对两幅阴影图灰度值积分、去倾斜及波面整合等数据处理再现出被检离轴非球面的波面误差.在被检离轴非球面两个方向的弥散斑分别为0.152 mm和0.284 mm时, 干涉检测得到其面形误差峰谷值为1.110 μm、均方根值为0.194 μm, 且两种检测方法的波面轮廓相一致.实验结果验证了基于付科法的离轴非球面再现技术的正确性, 可以应用于指导离轴非球面在细磨粗抛阶段的加工并且实现与精抛光阶段干涉检测的有效衔接.
测量 离轴非球面 付科法 光学检测 波面再现 Testing Off-axis aspheric surface Foucault test Optical testing Wavefront retrieval 
光子学报
2017, 46(3): 0322002
孙长胜 1,2,3,*朱永田 1,2胡中文 1,2徐腾 1,2梅蓉 1,2,3
作者单位
摘要
1 中国科学院国家天文台南京天文光学技术研究所,南京210042
2 中国科学院天文光学技术重点实验室,南京210042
3 中国科学院大学,北京100049
提出了一种基于空间光程差调制的条纹位置测量方法, 用于恒星干涉仪条纹搜寻和条纹追踪.来自基线两端的两光束合束时, 通过合束器在两光束之间引入一个倾角, 用以实现静态的空间光程差调制.使用成像透镜将静态光程差调制得到的白光干涉条纹成像到CCD探测器上.白光条纹位置的偏移与两光束之间的光程差大小相关, 使用获得的干涉条纹实时计算白光条纹位置, 测量出两束光之间的光程差, 用于延迟线的实时光程差补偿, 从而可以稳定干涉条纹.数值模拟和实验结果表明, 采用该方法获得的最大光程差测量误差为0.159 μm, 小于数值模拟和实验所用宽带光的平均波长0.555 μm, 测量精度满足条纹相干的要求.与时间调制方法相比, 该方法原理和算法简单, 且对于大气扰动更不敏感.
光学技术与仪器 恒星干涉仪 干涉实验 条纹跟踪方法 干涉仪 大气湍流 光学相干 光学望远镜 干涉测量 Optical technology and instrument Stellar interferometer Interference experiment Fringe trackingmethod Interferometers Atmospheric turbulence Optical coherence Optical telescopes Interferometry 
光子学报
2016, 45(9): 0912005
张弛 1,2,3,*朱永田 1,2张凯 1,2
作者单位
摘要
1 中国科学院 国家天文台 南京天文光学技术研究所,江苏 南京 210042
2 中国科学院 天文光学技术重点实验室,江苏 南京 210042
3 中国科学院大学, 北京 100049
介绍国际上地面极大光学/红外望远镜的研制概况,分析高分辨率光谱仪与极大口径望远镜耦合中的难题,结果表明极大口径望远镜需要超大面积阶梯光栅和超快焦比相机。根据光谱仪与望远镜的匹配关系,30 m级极大口径望远镜的高分辨率光谱仪的准直光束将大于70 cm,主色散阶梯光栅的面积大于2 m2,照相机的焦比F/0.5,按照目前的制造技术无法提供上述光栅和相机,因此,提出高分辨率光谱仪与极大望远镜进行耦合的技术。针对耦合问题给出了相应解决方案,即采用像切分器、拼接光栅以及白瞳设计等技术将是极大口径望远镜与高分辨率光谱仪耦合的主要解决方案。
天文望远镜 高分辨率光谱仪 阶梯光栅 光谱 astronomical telescope high-resolution spectrograph echelle grating spectra 
应用光学
2014, 35(5): 868

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!