红外与毫米波学报, 2016, 35 (6): 694, 网络出版: 2017-01-12   

基于Au/VO2纳米结构的可调控红外吸收器设计

Design of tunable infrared absorber based on Au/VO2 nanostructures
作者单位
1 上海理工大学 光电信息与计算机工程学院, 上海 200093
2 上海市现代光学系统重点实验室, 上海 200093
3 上海电力学院 电子与信息工程学院, 上海 200090
4 上海健康医学院医学影像学院, 上海 201318
摘要
设计了一种Au/VO2周期性方形孔洞阵列结构的红外吸收器, 利用时域有限差分法研究了吸收器的结构参数对吸收光谱的影响, 优选出VO2和Au膜层厚度分别为140 nm和80 nm, 孔洞边长和阵列周期分别为1.1 μm和1.2 μm时, 吸收可调控特性最为明显, 在2.3 μm处其高低温的吸收率差值可达80.3%.理论模拟计算了光以不同偏振、入射角入射时的吸收, 结果表明, 正入射时吸收器是偏振无关的; 斜入射时吸收器具有广角吸收的特点, 与TM偏振相比TE偏振下吸收器具有更强的角度依赖性.低温时吸收器中的电磁场呈高度局域化分布, 表现为强的吸收; 而高温时吸收器中的电磁场分布在吸收器表面, 吸收被抑制.所设计的吸收器吸收效率高, 吸收强度可以调控, 可应用于新型可调控智能光电器件.
Abstract
An infrared absorber based on Au/VO2 periodic square hole array is designed in this paper. The effects of structural parameters on the absorption spectrum were calculated by the finite difference time domain method. The theoretical simulation results show that the absorption tunability was the most obvious at Au film thickness of 80nm and VO2 film thickness of 140nm, and the square hole length and array period were 1.1μm and 1.2μm, respectively. The absorption difference between high and low temperature can reach to 80.3% at 2.3μm. Considering the different polarization and incident angles, it is evident that the absorber was polarization-independent at normal incidence and wide angle at oblique incidence. The angular dependence was much stronger in TE polarization compared with TM polarization. In addition, the absorber presented strong absorption because of the highly localized electromagnetic field distribution under low temperature, but the electromagnetic fields are located at the surface at high temperature, which lead to suppressed absorption. The absorber can be applied to new tunable intelligent photovoltaic device due to the advantages of high absorption efficiency, tunable absorption intensity, and easy implementation.
参考文献

[1] NI Bo, CHEN XiaoShuang, ZHANG Yang, et al. Impact of resonator rotational symmetry on infrared metamaterial absorber[J]. Journal of Infrared and Millimeter Waves(倪波,陈效双,张杨,等. 旋转对称性对红外超材料完美吸收器特性的影响,红外与毫米波学报), 2014, 33(4): 380-385.

[2] Zhou H, Cao X, Jiang M, et al. Surface plasmon resonance tunability in VO2/Au/VO2 thermochromic structure[J]. Laser & Photonics Reviews, 2014, 8(4): 617-625.

[3] Stewart M E, Anderton C R, Thompson L B, et al. Nanostructured plasmonic sensors[J]. Chemical reviews, 2008, 108(2): 494-521.

[4] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano letters, 2010, 10(7): 2342-2348.

[5] Min C, Li J, Veronis G, et al. Enhancement of optical absorption in thinfilm organic solar cells through the excitation of plasmonic modes in metallic gratings[J]. Applied Physics Letters, 2010, 96(13):133302.

[6] Tao H, Bingham C M, Strikwerda A C, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization[J]. Physical review B, 2008, 78(24):241103.

[7] Miao J, Hu W D, Jing Y, et al. Surface PlasmonEnhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays[J]. Small, 2015, 11(20):2392-2398.

[8] WANG Feng, LI Yi, DING Jie, et al. Preparation and optical properties of VO2/FTO thermochromic composite films[J]. Journal of Infrared and Millimeter Waves (王锋,李毅,丁杰,等. VO2/FTO复合热致变色薄膜的制备及其光学特性,红外与毫米波学报), 2014, 33(2):143-148.

[9] Balberg I, Trokman S. Highcontrast optical storage in VO2 films[J]. Journal of Applied Physics, 1975, 46(5):2111-2119.

[10] Hu B, Ding Y, Chen W, et al. External‐strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor[J]. Advanced Materials, 2010, 22(45):5134-5139.

[11] Liu H, Wang Y, Wang K, et al. Design and synthesis of a novel nanothorn VO2 (B) hollow microsphere and their application in lithiumion batteries[J]. Journal of Materials Chemistry, 2009, 19(18): 2835-2840.

[12] Xiao H, Li Y, Yuan W R, et al. Microstructures and thermochromic characteristics of VO2/AZO composite films[J]. Infrared Physics & Technology, 2016, 76(2016):580-586.

[13] TANG JiaYin, LI Yi, SUN Yao, et al. Optical properties of VO2 nano periodic array[J]. Journal of Infrared and Millimeter Waves(唐佳茵,李毅,孙瑶,等. 二氧化钒纳米周期点阵的光学特性,红外与毫米波学报), 2016, 35(2):227-233.

[14] Hao R, Li Y, Liu F, et al. Electric field induced metalinsulator transition in VO2 thin film based on FTO/VO2/FTO structure[J]. Infrared Physics & Technology, 2016. 75(2016):82-86.

[15] Fang B Y, Li Y, Tong G X, et al. Optical properties of vanadium dioxide thin film in nanoparticle structure[J]. Optical Materials, 2015, 47(2015):225-230.

[16] Maaza M, Nemraoui O, Sella C, et al. Thermal induced tunability of surface plasmon resonance in Au–VO2 nanophotonics[J]. Optics communications, 2005, 254(1):188-195.

[17] Xu G, Huang C M, Tazawa M, et al. NanoAg on vanadium dioxide. II. Thermal tuning of surface plasmon resonance[J]. Journal of Applied Physics, 2008, 104(5):053102.

[18] Driscoll T, Palit S, Qazilbash M M, et al. Dynamic tuning of an infrared hybridmetamaterial resonance using vanadium dioxide[J]. Applied Physics Letters, 2008, 93(2):024101.

[19] Kocer H, Butun S, Banar B, et al. Thermal tuning of infrared resonant absorbers based on hybrid goldVO2 nanostructures[J]. Applied Physics Letters, 2015, 106(16):161104.

[20] Dicken M J, Aydin K, Pryce I M, et al. Frequency tunable nearinfrared metamaterials based on VO2 phase transition[J]. Optics express, 2009, 17(20):18330-18339.

[21] Wu C, Burton Neuner III, Shvets G, et al. Largearea wideangle spectrally selective plasmonic absorber[J]. Physical Review B, 2011, 84(7):075102.

[22] Wang L P, Zhang Z M. Wavelengthselective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics[J]. Applied Physics Letters, 2012, 100(6):063902.

[23] Bai Y, Zhao L, Ju D, et al. Wideangle, polarizationindependent and dualband infrared perfect absorber based on Lshaped metamaterial[J]. Optics express, 2015, 23(7):8670-8680.

[24] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarizationindependent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nature communications, 2011, 2:517.

[25] Cao T, Zhang L, Simpson R E, et al. Midinfrared tunable polarizationindependent perfect absorber using a phasechange metamaterial[J]. JOSA B, 2013, 30(6):1580-1585.

[26] Zhang B, Zhao Y, Hao Q, et al. Polarizationindependent dualband infrared perfect absorber based on a metaldielectricmetal elliptical nanodisk array[J]. Optics express, 2011, 19(16):15221-15228.

伍征义, 李毅, 陈培祖, 蒋蔚, 徐婷婷, 刘志敏, 张娇, 方宝英, 王晓华, 肖寒. 基于Au/VO2纳米结构的可调控红外吸收器设计[J]. 红外与毫米波学报, 2016, 35(6): 694. WU Zheng-Yi, LI Yi, CHEN Pei-Zu, JIANG Wei, XU Ting-Ting, LIU Zhi-Min, ZHANG Jiao, FANG Bao-Ying, WANG Xiao-Hua, XIAO Han. Design of tunable infrared absorber based on Au/VO2 nanostructures[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 694.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!