大气与环境光学学报, 2017, 12 (1): 33, 网络出版: 2017-02-09   

基于MAX-DOAS的大气对流层SO2垂直柱浓度遥测

Measuring Tropospheric Vertical Column Density of SO2 by Multi-Axis Differential Optical Absorption Spectroscopy
作者单位
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心,中国科学院城市环境研究所, 福建 厦门 361021
摘要
基于多轴差分吸收光谱技术(multi-axis differential optical absorption spectroscopy, MAX-DOAS)获得了对流层SO2垂直柱浓度。采用不同 参考谱和不同波段来获得SO2差分斜柱浓度,通过对比发现,当圈天顶光谱作为参考谱的反演误差最小,且全天相对稳定波动小,误差小于5%。通过 六个波段的对比选取了最优反演波段为307.5~315 nm。结合地面气象数据对2015年10月14日~18日的污染过程进行了研究,数据分析表明 风速和风向是影响监测点SO2浓度的两个重要因素,城市和电厂产生的SO2会在东风和南风的影响下向监测点输送。通过研究表明, MAX-DOAS能够准确反演大气对流层SO2垂直柱浓度信息,对于探究城市大气对流层SO2垂直柱浓度、卫星校验、模型校验以及污染输送的研究具有重要意义。
Abstract
The vertical column density (VCD) of tropospheric SO2 was obtained by using multi-axis differential optical absorption spectroscopy (MAX-DOAS). And differential slant column density (dSCD) of SO2 was got by using different reference spectra and different wave bands. By comparison, the error and the variation of error was minimum when using the sequential reference, and the error was less than 5%. Six wave bands were selected and compared to determine the optimal retrieval wave band which was 307.5~315 nm. Combined with meteorological data, a contamination process from 14th to 18th, October, 2015 was studied. The data analysis showed that wind speed and direction were two important factors affecting the concentration of SO2 in monitoring site. The SO2 produced from city and power plants was transported to monitoring site under the influence of east and south wind. According to the research, MAX-DOAS can accurately inverse the atmospheric SO2 VCD, which has great significance for exploring the tropospheric SO2 VCD of the city, satellite calibration, model validation and studying pollution transport.
参考文献

[1] Krueger A J. Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer [J]. Science, 1983, 220(4604): 1377-1379.

[2] Lee C, Richter A, Weber M,et al. SO2 retrieval from SCIAMACHY using the weighting function DOAS (WFDOAS) technique: comparison with Standard DOAS retrieval [J]. Atmos. Chem. Phys., 2008, 8(20): 6137-6145.

[3] Platt U, Perner D, Ptz H. Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption [J]. J. Geophys. Res. 1979, 84: 6329-6335.

[4] Platt U, Stutz J. Differential Optical Absorption spectroscopy, Principles and Applications [M]. Springer, 2008: 597.

[5] Galle B, Oppenheimer C, Geyer A, et al. A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance [J]. J. Volcanol. Geothe. Res., 2003, 119(1): 241-254.

[6] Galle B, Johansson M, Rivera C,et al. Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description [J]. J. Geophys. Res., 2010, 115: D05304.

[7] McGonigle A J S. Measurement of volcanic SO2 fluxes with differential optical absorption spectroscopy [J]. J. Volcanol. Geothe. Res., 2007, 162(3): 111-122.

[8] Millan M, Townsend S, Davies J. Study of the Barringe Refractor Plate Correlation Spectrometer as a Remote Sensing Instrument [D]. Toronto: Master’s Thesis of University of Toronto, 1969.

[9] Frieβ U, Sihler H, Sander R, et al. The vertical distribution of BrO and aerosols in the Arctic: Measurements by active and passive differential optical absorption spectroscopy [J]. J. Geophys. Res., 11(D14): D00R04.

[10] Groβmann K, Frieβ U, Peters E, et al. Iodine monoxide in the Western Pacific marine boundary layer [J]. Atmos. Chem. Phys., 2013, 13(6): 3363-3378.

[11] Heckel A, Richter A, Tarsu T, et al. MAX-DOAS measurements of formaldehyde in the Po-Valley [J]. Atmos. Chem. Phys., 2005, 5(4): 909-918.

[12] Wagner T, Beirle S, Brauers T,et al. Inversion of tropospheric profiles of aerosol extinction and HCHO and NO2 mixing ratios from MAX-DOAS observations in Milano during the summer of 2003 and comparison with independent data sets [J]. Atmos. Meas. Tech., 2011, 4(12): 2685-2715.

[13] Wagner T, Dix B, von Friedeburg C, et al. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols-Principles and information content [J]. J. Geophys. Res., 2004, 109(D22): D22205.

[14] Clémer K, Van Roozendael M, Fayt C, et al. Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing [J]. Atmos. Meas. Tech., 2010, 3(4): 863-878.

[15] Wittrock F, Oetjen H, Richter A,et al. MAX-DOAS measurements of atmospheric trace gases in Ny-lesund-Radiative transfer studies and their application [J]. Atmos. Chem. Phys., 2004, 4(4): 955-966.

[16] Vlemmix T, Piters A J M, Stammes P,et al. Retrieval of tropospheric NO2 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction [J]. Atmos. Meas. Tech., 2010, 3(5): 1287-1305.

[17] 王 婷,王普才,余 环, 等.华北地区香河站对流层的MAX-DOAS观测及变化特征分析 [J].气候与环境研究, 19(1): 51-60.

    Wang Ting, Wang Pucai, Yu Huan, et al. Analysis of the characteristics of tropospheric NO2 in Xianghe based on MAX-DOAS measurement [J]. Climatic and Environmental Research, 2014, 19(1): 51-60(in Chinese).

[18] Bobrowski N, Platt U. SO2/BrO ratios studied in five volcanic plumes [J]. J. Volcanol. Geotherm. Res., 2007, 16(3): 147-160.

[19] Galle B, Johansson M, Rivera C,et al. Network for Observation of Volcanic and Atmospheric Change (NOVAC)-A global network for volcanic gas monitoring: Network layout and instrument description [J]. J. Geophys. Res., 115(D5): D05304.

[20] Lee C, Richter A, Lee H,et al. Impact of transport of sulfur dioxide from the Asian continent on the air quality over Korea during May 2005 [J]. Atmos. Environ., 2008, 42(7): 1461-1475.

[21] Irie H, Takashima H, Kanaya Y,et al. Eight-component retrievals from ground-based MAX-DOAS observations [J]. Atmos. Meas. Tech., 2011, 4(6): 1027-1044.

[22] Wu F C, Xie P H, Li A,et al. Observations of SO2 by mobile DOAS in the Guangzhou eastern area during the Asian Games 2010 [J]. Atmos. Meas. Tech., 2013, 6: 2277-2292.

[23] Platt U, Stutz J. Differential Optical Absorption Spectroscopy [M]. Heidelberg: Springer, 2008.

[24] Brinksma E J, Pinardi G, Volten H, et al. The 2005 and 2006 DANDELIONS NO2 and aerosol intercomparison campaigns [J]. J. Geophys. Res., 2008, 113: D16S46.

[25] Shaiganfar R, Beirle S, Sharma M,et al. Estimation of NOx emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data [J]. Atmos. Chem. Phys., 2011, 11: 10871-10887.

[26] 牟福生, 李 昂, 谢品华, 等. 基于MAX-DOAS的对流层NO2和气溶胶光学厚度遥测反演 [J]. 大气与环境光学学报, 2015, 3(10): 231-238.

    Mou Fusheng, Li Ang, Xie Pinhua, et al. Messurement and retrieval of tropospheric NO2 and aerosol optical depth based on MAX-DOAS [J]. Journal of Atmospheric and Environmental Optics, 2015, 3(10): 231-238(in Chinese).

[27] Bobrowski N, Platt U. SO2 / BrO ratios studied in five volcanic plumes [J]. J. Volcanol. Geotherm. Res., 2007, 166: 147-160.

[28] Vandaele A C, Hermans C, Simon P C,et al. Measurements of the NO2 absorption cross-section from 42000 cm-1 to 10000 cm-1 (238~1000 nm) at 220 K and 294 K [J]. J. Quant. Spectrosc. Ra., 1998, 59(3): 171-184.

[29] Bogumil K, Orphal J, Homann T,et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference spectra for atmospheric remote sensing in the 230-2380 nm region [J]. J. Photochem. Photobiol. A, 2003, 157(2): 167-184.

[30] Chance K V, Spurr R J. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum [J]. Appl. Opt., 1997, 3(21): 5224-5230.

田鑫, 李昂, 徐晋, 谢品华, 牟福生, 吴丰成, 胡肇熴, 张琼, 王汝雯. 基于MAX-DOAS的大气对流层SO2垂直柱浓度遥测[J]. 大气与环境光学学报, 2017, 12(1): 33. TIAN Xin, LI Ang, XU Jin, XIE Pinhua, MOU Fusheng, WU Fengcheng, HU Zhaokun, ZHANG Qiong, WANG Ruwen. Measuring Tropospheric Vertical Column Density of SO2 by Multi-Axis Differential Optical Absorption Spectroscopy[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(1): 33.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!