液晶与显示, 2020, 35 (7): 697, 网络出版: 2020-10-27   

胆甾相液晶多重乳液微结构激光特性的研究进展

Review on laser properties of cholesteric liquid crystals with multiple-emulsion microstructures
作者单位
厦门大学 电子科学与技术学院, 福建 厦门 361005
引用该论文

罗炜程, 车凯军, 李森森, 陈鹭剑. 胆甾相液晶多重乳液微结构激光特性的研究进展[J]. 液晶与显示, 2020, 35(7): 697.

LUO Wei-cheng, CHE Kai-jun, LI Sen-sen, CHEN Lu-jian. Review on laser properties of cholesteric liquid crystals with multiple-emulsion microstructures[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 697.

参考文献

[1] 李昌立, 孙晶, 蔡红星, 等.胆甾相液晶的光学特性[J].液晶与显示, 2002, 17(3): 193-198.

    李昌立, 孙晶, 蔡红星, 等.胆甾相液晶的光学特性[J].液晶与显示, 2002, 17(3): 193-198.

    LI C L, SUN J, CAI H X, et al. Optical properties of cholesteric liquid crystals [J]. Chinese Journal of Liquid Crystals and Displays, 2002, 17(3): 193-198. (in Chinese)

    LI C L, SUN J, CAI H X, et al. Optical properties of cholesteric liquid crystals [J]. Chinese Journal of Liquid Crystals and Displays, 2002, 17(3): 193-198. (in Chinese)

[2] BISOYI H K, BUNNING T J, LI Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures [J]. Advanced Materials, 2018, 30(25): 1706512.

    BISOYI H K, BUNNING T J, LI Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures [J]. Advanced Materials, 2018, 30(25): 1706512.

[3] FUNAMOTO K, OZAKI M, YOSHINO K. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal [J]. Japanese Journal of Applied Physics, 2003, 42(12B): L1523-L1525.

    FUNAMOTO K, OZAKI M, YOSHINO K. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal [J]. Japanese Journal of Applied Physics, 2003, 42(12B): L1523-L1525.

[4] IWAI Y, KAJI H, UCHIDA Y, et al. Temperature-dependent color change of cholesteric liquid crystalline core-shell microspheres [J]. Molecular Crystals and Liquid Crystals, 2015, 615(1): 9-13.

    IWAI Y, KAJI H, UCHIDA Y, et al. Temperature-dependent color change of cholesteric liquid crystalline core-shell microspheres [J]. Molecular Crystals and Liquid Crystals, 2015, 615(1): 9-13.

[5] JANG J H, PARK S Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics [J]. Sensors and Actuators B: Chemical, 2017, 241: 636-643.

    JANG J H, PARK S Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics [J]. Sensors and Actuators B: Chemical, 2017, 241: 636-643.

[6] LEE H G, MUNIR S, PARK S Y. Cholesteric liquid crystal droplets for biosensors [J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26407-26417.

    LEE H G, MUNIR S, PARK S Y. Cholesteric liquid crystal droplets for biosensors [J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26407-26417.

[7] KIM J G, PARK S Y. Photonic spring-like shell templated from cholesteric liquid crystal prepared by microfluidics [J]. Advanced Optical Materials, 2017, 5(13): 1700243.

    KIM J G, PARK S Y. Photonic spring-like shell templated from cholesteric liquid crystal prepared by microfluidics [J]. Advanced Optical Materials, 2017, 5(13): 1700243.

[8] NOH K G, PARK S Y. Smart molecular-spring photonic droplets [J]. Materials Horizons, 2017, 4(4): 633-640.

    NOH K G, PARK S Y. Smart molecular-spring photonic droplets [J]. Materials Horizons, 2017, 4(4): 633-640.

[9] SEO H J, LEE S S, NOH J, et al. Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials [J]. Journal of Materials Chemistry C, 2017, 5(30): 7567-7573.

    SEO H J, LEE S S, NOH J, et al. Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials [J]. Journal of Materials Chemistry C, 2017, 5(30): 7567-7573.

[10] MYUNG D B, PARK S Y. Optical properties and applications of photonic shells [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20350-20359.

    MYUNG D B, PARK S Y. Optical properties and applications of photonic shells [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20350-20359.

[11] NOH J, LIANG H L, DREVENSEK-OLENIK I, et al. Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets [J]. Journal of Materials Chemistry C, 2014, 2(5): 806-810.

    NOH J, LIANG H L, DREVENSEK-OLENIK I, et al. Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets [J]. Journal of Materials Chemistry C, 2014, 2(5): 806-810.

[12] LEE S S, KIM B, KIM S K, et al. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules [J]. Advanced Materials, 2015, 27(4): 627-633.

    LEE S S, KIM B, KIM S K, et al. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules [J]. Advanced Materials, 2015, 27(4): 627-633.

[13] LEE S S, KIM S K, WON J C, et al. Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment [J]. Angewandte Chemie International Edition, 2015, 54(50): 15266-15270.

    LEE S S, KIM S K, WON J C, et al. Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment [J]. Angewandte Chemie International Edition, 2015, 54(50): 15266-15270.

[14] LEE S S, SEO H J, KIM Y H, et al. Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals [J]. Advanced Materials, 2017, 29(23): 1606894.

    LEE S S, SEO H J, KIM Y H, et al. Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals [J]. Advanced Materials, 2017, 29(23): 1606894.

[15] IWAI Y, KAJI H, UCHIDA Y, et al. Chemiluminescence emission in cholesteric liquid crystalline core-shell microcapsules [J]. Journal of Materials Chemistry C, 2014, 2(25): 4904-4908.

    IWAI Y, KAJI H, UCHIDA Y, et al. Chemiluminescence emission in cholesteric liquid crystalline core-shell microcapsules [J]. Journal of Materials Chemistry C, 2014, 2(25): 4904-4908.

[16] KAND J H, KIM S H, FERNANDEZ-NIEVES A, et al. Amplified photon upconversion by photonic shell of cholesteric liquid crystals [J]. Journal of the American Chemical Society, 2017, 139(16): 5708-5711.

    KAND J H, KIM S H, FERNANDEZ-NIEVES A, et al. Amplified photon upconversion by photonic shell of cholesteric liquid crystals [J]. Journal of the American Chemical Society, 2017, 139(16): 5708-5711.

[17] KOPP V I, FAN B, VITHANA H K M, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals [J]. Optics Letters, 1998, 23(21): 1707-1709.

    KOPP V I, FAN B, VITHANA H K M, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals [J]. Optics Letters, 1998, 23(21): 1707-1709.

[18] TAHERI B, MUNOZ A F, PALFFY-MUHORAY P, et al. Low threshold lasing in cholesteric liquid crystals [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 2006, 358(1): 73-82.

    TAHERI B, MUNOZ A F, PALFFY-MUHORAY P, et al. Low threshold lasing in cholesteric liquid crystals [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 2006, 358(1): 73-82.

[19] 范一强, 王洪亮, 高克鑫, 等.模块化微流控系统与应用[J].分析化学, 2018, 46(12): 1863-1871.

    范一强, 王洪亮, 高克鑫, 等.模块化微流控系统与应用[J].分析化学, 2018, 46(12): 1863-1871.

    FAN Y Q, WANG H L, GAO K X, et al. Applications of modular microfluidics technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1863-1871. (in Chinese)

    FAN Y Q, WANG H L, GAO K X, et al. Applications of modular microfluidics technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1863-1871. (in Chinese)

[20] 韩县伟, 张洪武, 罗洪艳, 等.基于微流控液滴形成技术的聚乙烯醇微球制备[J].分析化学, 2018, 46(8): 1269-1274.

    韩县伟, 张洪武, 罗洪艳, 等.基于微流控液滴形成技术的聚乙烯醇微球制备[J].分析化学, 2018, 46(8): 1269-1274.

    HAN X W, ZHANG H W, LUO H Y, et al. Preparation of poly (vinyl alcohol) microspheres based on droplet microfluidic technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1269-1274. (in Chinese)

    HAN X W, ZHANG H W, LUO H Y, et al. Preparation of poly (vinyl alcohol) microspheres based on droplet microfluidic technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1269-1274. (in Chinese)

[21] UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device [J]. Science, 2005, 308(5721): 537-541.

    UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device [J]. Science, 2005, 308(5721): 537-541.

[22] LIN Y L, YANG Y J, SHAN Y W, et al. Magnetic nanoparticle-assisted tunable optical patterns from spherical cholesteric liquid crystal bragg reflectors [J]. Nanomaterials (Basel), 2017, 7(11): 376.

    LIN Y L, YANG Y J, SHAN Y W, et al. Magnetic nanoparticle-assisted tunable optical patterns from spherical cholesteric liquid crystal bragg reflectors [J]. Nanomaterials (Basel), 2017, 7(11): 376.

[23] CHE K J, YANG Y J, LIN Y L, et al. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing [J]. Lab on a Chip, 2019, 19(18): 3116-3122.

    CHE K J, YANG Y J, LIN Y L, et al. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing [J]. Lab on a Chip, 2019, 19(18): 3116-3122.

[24] UCHIDA Y, IWAI Y, AKITA T, et al. Size control of cholesteric liquid crystalline microcapsules [J]. Molecular Crystals and Liquid Crystals, 2015, 613(1): 82-87.

    UCHIDA Y, IWAI Y, AKITA T, et al. Size control of cholesteric liquid crystalline microcapsules [J]. Molecular Crystals and Liquid Crystals, 2015, 613(1): 82-87.

[25] BELLOUL M, BARTOLO J F, ZIRAOUI B, et al. High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device [J]. Applied Physics Letters, 2013, 103(3): 033112.

    BELLOUL M, BARTOLO J F, ZIRAOUI B, et al. High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device [J]. Applied Physics Letters, 2013, 103(3): 033112.

[26] AKITA T, KOUNO H, IWAI Y, et al. Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points [J]. Journal of Materials Chemistry C, 2017, 5(6): 1303-1307.

    AKITA T, KOUNO H, IWAI Y, et al. Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points [J]. Journal of Materials Chemistry C, 2017, 5(6): 1303-1307.

[27] LOPEZ-LEON T, KONING V, DEVAIAH K B S, et al. Frustrated nematic order in spherical geometries [J]. Nature Physics, 2011, 7(5): 391-394.

    LOPEZ-LEON T, KONING V, DEVAIAH K B S, et al. Frustrated nematic order in spherical geometries [J]. Nature Physics, 2011, 7(5): 391-394.

[28] IWAI Y, IIJIMA R, YAMAMOTO K, et al. Shrinkage of cholesteric liquid crystalline microcapsule as omnidirectional cavity to suppress optical loss [J]. Advanced Optical Materials, 2020, 8(6): 1901363.

    IWAI Y, IIJIMA R, YAMAMOTO K, et al. Shrinkage of cholesteric liquid crystalline microcapsule as omnidirectional cavity to suppress optical loss [J]. Advanced Optical Materials, 2020, 8(6): 1901363.

[29] HUMAR M, MUEVI I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets [J]. Optics Express, 2010, 18(26): 26995-27003.

    HUMAR M, MUEVI I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets [J]. Optics Express, 2010, 18(26): 26995-27003.

[30] PIRNAT G, HUMAR M, MUEVI I. Remote and autonomous temperature measurement based on 3D liquid crystal microlasers [J]. Optics Express, 2018, 26(18): 22615-22625.

    PIRNAT G, HUMAR M, MUEVI I. Remote and autonomous temperature measurement based on 3D liquid crystal microlasers [J]. Optics Express, 2018, 26(18): 22615-22625.

[31] LIN J D, HSIEH M H, WEI G J, et al. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant [J]. Optics Express, 2013, 21(13): 15765-15776.

    LIN J D, HSIEH M H, WEI G J, et al. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant [J]. Optics Express, 2013, 21(13): 15765-15776.

[32] ZHENG Z G, LIU B W, ZHOU L, et al. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion [J]. Journal of Materials Chemistry C, 2015, 3(11): 2462-2470.

    ZHENG Z G, LIU B W, ZHOU L, et al. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion [J]. Journal of Materials Chemistry C, 2015, 3(11): 2462-2470.

[33] HUMAR M, MUEVI I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets [J]. Optics Express, 2011, 19(21): 19836-19844.

    HUMAR M, MUEVI I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets [J]. Optics Express, 2011, 19(21): 19836-19844.

[34] JAMPANI V S R, HUMAR M, MUEVI I. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity [J]. Optics Express, 2013, 21(18): 20506-20516.

    JAMPANI V S R, HUMAR M, MUEVI I. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity [J]. Optics Express, 2013, 21(18): 20506-20516.

[35] WANG Y, LI H Y, ZHAO L Y, et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application [J]. Optics Express, 2017, 25(2): 918-926.

    WANG Y, LI H Y, ZHAO L Y, et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application [J]. Optics Express, 2017, 25(2): 918-926.

[36] MUR M, SOFI J A, KVAI I, et al. Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets [J]. Optics Express, 2017, 25(2): 1073-1083.

    MUR M, SOFI J A, KVAI I, et al. Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets [J]. Optics Express, 2017, 25(2): 1073-1083.

[37] DUAN R, HAO X L, LI Y Z, et al. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode [J]. Sensors and Actuators B: Chemical, 2020, 308: 127672.

    DUAN R, HAO X L, LI Y Z, et al. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode [J]. Sensors and Actuators B: Chemical, 2020, 308: 127672.

[38] WANG Y, LI H Y, ZHAO L Y, et al. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets [J]. Applied Physics Letters, 2016, 109(23): 231906.

    WANG Y, LI H Y, ZHAO L Y, et al. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets [J]. Applied Physics Letters, 2016, 109(23): 231906.

[39] ZHAO L Y, WANG Y, YUAN Y G, et al. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor [J]. Optics Communications, 2017, 402: 181-185.

    ZHAO L Y, WANG Y, YUAN Y G, et al. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor [J]. Optics Communications, 2017, 402: 181-185.

[40] ZHANG C, FU D Y, XIA C L, et al. Lasing emission of dye-doped cholesteric liquid crystal microdroplet wrapped by polyglycerol in hollow glass microsphere [J]. Chinese Optics Letters, 2020, 18(1): 011402.

    ZHANG C, FU D Y, XIA C L, et al. Lasing emission of dye-doped cholesteric liquid crystal microdroplet wrapped by polyglycerol in hollow glass microsphere [J]. Chinese Optics Letters, 2020, 18(1): 011402.

[41] LI Y, LUO D, CHEN R. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol [J]. Applied Optics, 2016, 55(31): 8864-8867.

    LI Y, LUO D, CHEN R. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol [J]. Applied Optics, 2016, 55(31): 8864-8867.

[42] UCHIDA Y, TAKANISHI Y, YAMAMOTO J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells [J]. Advanced Materials, 2013, 25(23): 3234-3237.

    UCHIDA Y, TAKANISHI Y, YAMAMOTO J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells [J]. Advanced Materials, 2013, 25(23): 3234-3237.

[43] CHEN L J, LI Y N, FAN J, et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch [J]. Advanced Optical Materials, 2014, 2(9): 845-848.

    CHEN L J, LI Y N, FAN J, et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch [J]. Advanced Optical Materials, 2014, 2(9): 845-848.

[44] CHEN L J, GONG L L, LIN Y L, et al. Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers [J]. Lab on a Chip, 2016, 16(7): 1206-1213.

    CHEN L J, GONG L L, LIN Y L, et al. Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers [J]. Lab on a Chip, 2016, 16(7): 1206-1213.

[45] LIN Y L, GONG L L, CHE K J, et al. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells [J]. Applied Physics Letters, 2017, 110(22): 223301.

    LIN Y L, GONG L L, CHE K J, et al. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells [J]. Applied Physics Letters, 2017, 110(22): 223301.

[46] LEE S S, KIM J B, KIM Y H, et al. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals [J]. Science Advances, 2018, 4(6): eaat8276.

    LEE S S, KIM J B, KIM Y H, et al. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals [J]. Science Advances, 2018, 4(6): eaat8276.

[47] PARK S, LEE S S, KIM S H. Photonic multishells composed of cholesteric liquid crystals designed by controlled phase separation in emulsion drops [J]. Advanced Materials, 2020.DOI: 10.1002/adma.202002166.

    PARK S, LEE S S, KIM S H. Photonic multishells composed of cholesteric liquid crystals designed by controlled phase separation in emulsion drops [J]. Advanced Materials, 2020.DOI: 10.1002/adma.202002166.

罗炜程, 车凯军, 李森森, 陈鹭剑. 胆甾相液晶多重乳液微结构激光特性的研究进展[J]. 液晶与显示, 2020, 35(7): 697. LUO Wei-cheng, CHE Kai-jun, LI Sen-sen, CHEN Lu-jian. Review on laser properties of cholesteric liquid crystals with multiple-emulsion microstructures[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 697.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!