液晶与显示, 2020, 35 (7): 697, 网络出版: 2020-10-27   

胆甾相液晶多重乳液微结构激光特性的研究进展

Review on laser properties of cholesteric liquid crystals with multiple-emulsion microstructures
作者单位
厦门大学 电子科学与技术学院, 福建 厦门 361005
摘要
染料掺杂的带边胆甾相液晶微激光器因阈值低、无需反射镜的特点, 自提出以来便一直是研究热点。具有复杂微结构的胆甾相液晶液滴是一种新颖的三维全向微激光器, 兼具有小型化、集成化与波长可调谐的特性, 更是引起了液晶非显示领域研究者们的广泛兴趣。其复杂的球形核壳微结构, 促使诸如分布反馈、回音壁和法布-珀罗等多种激光模式的产生。而玻璃毛细管微流控技术的出现, 使大规模制备单分散、尺寸可控的胆甾相液晶液滴成为可能, 同时为制备结构复杂的多重乳液提供了必要条件。本文简要介绍了制备液晶乳液所使用的玻璃毛细管微流控技术, 并综述了近年来与单重乳液胆甾相液晶液滴及多重乳液胆甾相液晶核壳微结构中的激光行为相关的研究工作。
Abstract
Dye-doped band-edge cholesteric liquid crystal (CLC) microlaser has been one of the focus of academic researches ever because of intrinsic properties, such as low threshold and mirrorless. As a novel three-dimensional omnidirectional microlaser, CLC emulsion droplets with complex microstructures exhibit appealing characteristics, such as miniaturization, integration and wavelength tunabilities, etc., arousing broad interests in the research field of liquid crystals (LCs) for non-display applications. The complex spherical core-shell microstructure results in the generation of a variety of laser modes such as distributed feedback (DFB) mode, whispering gallery (WG) mode and Fabry-Pérot(FP). The rapid development of glass-capillary microfluidic technique makes it possible to produce monodispersed CLC droplets with controllable sizes, providing conditions that are necessary for the fabrication of multiple emulsions with complex microstructures. In this review, the glass-capillary microfluidic technique is briefly introduced for the production of monodispersed LC emulsions. And the recent studies on the laser behavior in both the single-emulsion CLC droplets and multiple-emulsion CLC core-shell microstructures are presented and well discussed.
参考文献

[1] 李昌立, 孙晶, 蔡红星, 等.胆甾相液晶的光学特性[J].液晶与显示, 2002, 17(3): 193-198.

    李昌立, 孙晶, 蔡红星, 等.胆甾相液晶的光学特性[J].液晶与显示, 2002, 17(3): 193-198.

    LI C L, SUN J, CAI H X, et al. Optical properties of cholesteric liquid crystals [J]. Chinese Journal of Liquid Crystals and Displays, 2002, 17(3): 193-198. (in Chinese)

    LI C L, SUN J, CAI H X, et al. Optical properties of cholesteric liquid crystals [J]. Chinese Journal of Liquid Crystals and Displays, 2002, 17(3): 193-198. (in Chinese)

[2] BISOYI H K, BUNNING T J, LI Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures [J]. Advanced Materials, 2018, 30(25): 1706512.

    BISOYI H K, BUNNING T J, LI Q. Stimuli-driven control of the helical axis of self-organized soft helical superstructures [J]. Advanced Materials, 2018, 30(25): 1706512.

[3] FUNAMOTO K, OZAKI M, YOSHINO K. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal [J]. Japanese Journal of Applied Physics, 2003, 42(12B): L1523-L1525.

    FUNAMOTO K, OZAKI M, YOSHINO K. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal [J]. Japanese Journal of Applied Physics, 2003, 42(12B): L1523-L1525.

[4] IWAI Y, KAJI H, UCHIDA Y, et al. Temperature-dependent color change of cholesteric liquid crystalline core-shell microspheres [J]. Molecular Crystals and Liquid Crystals, 2015, 615(1): 9-13.

    IWAI Y, KAJI H, UCHIDA Y, et al. Temperature-dependent color change of cholesteric liquid crystalline core-shell microspheres [J]. Molecular Crystals and Liquid Crystals, 2015, 615(1): 9-13.

[5] JANG J H, PARK S Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics [J]. Sensors and Actuators B: Chemical, 2017, 241: 636-643.

    JANG J H, PARK S Y. pH-responsive cholesteric liquid crystal double emulsion droplets prepared by microfluidics [J]. Sensors and Actuators B: Chemical, 2017, 241: 636-643.

[6] LEE H G, MUNIR S, PARK S Y. Cholesteric liquid crystal droplets for biosensors [J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26407-26417.

    LEE H G, MUNIR S, PARK S Y. Cholesteric liquid crystal droplets for biosensors [J]. ACS Applied Materials & Interfaces, 2016, 8(39): 26407-26417.

[7] KIM J G, PARK S Y. Photonic spring-like shell templated from cholesteric liquid crystal prepared by microfluidics [J]. Advanced Optical Materials, 2017, 5(13): 1700243.

    KIM J G, PARK S Y. Photonic spring-like shell templated from cholesteric liquid crystal prepared by microfluidics [J]. Advanced Optical Materials, 2017, 5(13): 1700243.

[8] NOH K G, PARK S Y. Smart molecular-spring photonic droplets [J]. Materials Horizons, 2017, 4(4): 633-640.

    NOH K G, PARK S Y. Smart molecular-spring photonic droplets [J]. Materials Horizons, 2017, 4(4): 633-640.

[9] SEO H J, LEE S S, NOH J, et al. Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials [J]. Journal of Materials Chemistry C, 2017, 5(30): 7567-7573.

    SEO H J, LEE S S, NOH J, et al. Robust photonic microparticles comprising cholesteric liquid crystals for anti-forgery materials [J]. Journal of Materials Chemistry C, 2017, 5(30): 7567-7573.

[10] MYUNG D B, PARK S Y. Optical properties and applications of photonic shells [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20350-20359.

    MYUNG D B, PARK S Y. Optical properties and applications of photonic shells [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20350-20359.

[11] NOH J, LIANG H L, DREVENSEK-OLENIK I, et al. Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets [J]. Journal of Materials Chemistry C, 2014, 2(5): 806-810.

    NOH J, LIANG H L, DREVENSEK-OLENIK I, et al. Tuneable multicoloured patterns from photonic cross-communication between cholesteric liquid crystal droplets [J]. Journal of Materials Chemistry C, 2014, 2(5): 806-810.

[12] LEE S S, KIM B, KIM S K, et al. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules [J]. Advanced Materials, 2015, 27(4): 627-633.

    LEE S S, KIM B, KIM S K, et al. Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules [J]. Advanced Materials, 2015, 27(4): 627-633.

[13] LEE S S, KIM S K, WON J C, et al. Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment [J]. Angewandte Chemie International Edition, 2015, 54(50): 15266-15270.

    LEE S S, KIM S K, WON J C, et al. Reconfigurable photonic capsules containing cholesteric liquid crystals with planar alignment [J]. Angewandte Chemie International Edition, 2015, 54(50): 15266-15270.

[14] LEE S S, SEO H J, KIM Y H, et al. Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals [J]. Advanced Materials, 2017, 29(23): 1606894.

    LEE S S, SEO H J, KIM Y H, et al. Structural color palettes of core-shell photonic ink capsules containing cholesteric liquid crystals [J]. Advanced Materials, 2017, 29(23): 1606894.

[15] IWAI Y, KAJI H, UCHIDA Y, et al. Chemiluminescence emission in cholesteric liquid crystalline core-shell microcapsules [J]. Journal of Materials Chemistry C, 2014, 2(25): 4904-4908.

    IWAI Y, KAJI H, UCHIDA Y, et al. Chemiluminescence emission in cholesteric liquid crystalline core-shell microcapsules [J]. Journal of Materials Chemistry C, 2014, 2(25): 4904-4908.

[16] KAND J H, KIM S H, FERNANDEZ-NIEVES A, et al. Amplified photon upconversion by photonic shell of cholesteric liquid crystals [J]. Journal of the American Chemical Society, 2017, 139(16): 5708-5711.

    KAND J H, KIM S H, FERNANDEZ-NIEVES A, et al. Amplified photon upconversion by photonic shell of cholesteric liquid crystals [J]. Journal of the American Chemical Society, 2017, 139(16): 5708-5711.

[17] KOPP V I, FAN B, VITHANA H K M, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals [J]. Optics Letters, 1998, 23(21): 1707-1709.

    KOPP V I, FAN B, VITHANA H K M, et al. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals [J]. Optics Letters, 1998, 23(21): 1707-1709.

[18] TAHERI B, MUNOZ A F, PALFFY-MUHORAY P, et al. Low threshold lasing in cholesteric liquid crystals [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 2006, 358(1): 73-82.

    TAHERI B, MUNOZ A F, PALFFY-MUHORAY P, et al. Low threshold lasing in cholesteric liquid crystals [J]. Molecular Crystals and Liquid Crystals Science and Technology Section A Molecular Crystals and Liquid Crystals, 2006, 358(1): 73-82.

[19] 范一强, 王洪亮, 高克鑫, 等.模块化微流控系统与应用[J].分析化学, 2018, 46(12): 1863-1871.

    范一强, 王洪亮, 高克鑫, 等.模块化微流控系统与应用[J].分析化学, 2018, 46(12): 1863-1871.

    FAN Y Q, WANG H L, GAO K X, et al. Applications of modular microfluidics technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1863-1871. (in Chinese)

    FAN Y Q, WANG H L, GAO K X, et al. Applications of modular microfluidics technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1863-1871. (in Chinese)

[20] 韩县伟, 张洪武, 罗洪艳, 等.基于微流控液滴形成技术的聚乙烯醇微球制备[J].分析化学, 2018, 46(8): 1269-1274.

    韩县伟, 张洪武, 罗洪艳, 等.基于微流控液滴形成技术的聚乙烯醇微球制备[J].分析化学, 2018, 46(8): 1269-1274.

    HAN X W, ZHANG H W, LUO H Y, et al. Preparation of poly (vinyl alcohol) microspheres based on droplet microfluidic technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1269-1274. (in Chinese)

    HAN X W, ZHANG H W, LUO H Y, et al. Preparation of poly (vinyl alcohol) microspheres based on droplet microfluidic technology[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1269-1274. (in Chinese)

[21] UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device [J]. Science, 2005, 308(5721): 537-541.

    UTADA A S, LORENCEAU E, LINK D R, et al. Monodisperse double emulsions generated from a microcapillary device [J]. Science, 2005, 308(5721): 537-541.

[22] LIN Y L, YANG Y J, SHAN Y W, et al. Magnetic nanoparticle-assisted tunable optical patterns from spherical cholesteric liquid crystal bragg reflectors [J]. Nanomaterials (Basel), 2017, 7(11): 376.

    LIN Y L, YANG Y J, SHAN Y W, et al. Magnetic nanoparticle-assisted tunable optical patterns from spherical cholesteric liquid crystal bragg reflectors [J]. Nanomaterials (Basel), 2017, 7(11): 376.

[23] CHE K J, YANG Y J, LIN Y L, et al. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing [J]. Lab on a Chip, 2019, 19(18): 3116-3122.

    CHE K J, YANG Y J, LIN Y L, et al. Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing [J]. Lab on a Chip, 2019, 19(18): 3116-3122.

[24] UCHIDA Y, IWAI Y, AKITA T, et al. Size control of cholesteric liquid crystalline microcapsules [J]. Molecular Crystals and Liquid Crystals, 2015, 613(1): 82-87.

    UCHIDA Y, IWAI Y, AKITA T, et al. Size control of cholesteric liquid crystalline microcapsules [J]. Molecular Crystals and Liquid Crystals, 2015, 613(1): 82-87.

[25] BELLOUL M, BARTOLO J F, ZIRAOUI B, et al. High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device [J]. Applied Physics Letters, 2013, 103(3): 033112.

    BELLOUL M, BARTOLO J F, ZIRAOUI B, et al. High-throughput formation and control of monodisperse liquid crystals droplets driven by an alternating current electric field in a microfluidic device [J]. Applied Physics Letters, 2013, 103(3): 033112.

[26] AKITA T, KOUNO H, IWAI Y, et al. Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points [J]. Journal of Materials Chemistry C, 2017, 5(6): 1303-1307.

    AKITA T, KOUNO H, IWAI Y, et al. Room-temperature fabrication of mono-dispersed liquid crystalline shells with high viscosity and high melting points [J]. Journal of Materials Chemistry C, 2017, 5(6): 1303-1307.

[27] LOPEZ-LEON T, KONING V, DEVAIAH K B S, et al. Frustrated nematic order in spherical geometries [J]. Nature Physics, 2011, 7(5): 391-394.

    LOPEZ-LEON T, KONING V, DEVAIAH K B S, et al. Frustrated nematic order in spherical geometries [J]. Nature Physics, 2011, 7(5): 391-394.

[28] IWAI Y, IIJIMA R, YAMAMOTO K, et al. Shrinkage of cholesteric liquid crystalline microcapsule as omnidirectional cavity to suppress optical loss [J]. Advanced Optical Materials, 2020, 8(6): 1901363.

    IWAI Y, IIJIMA R, YAMAMOTO K, et al. Shrinkage of cholesteric liquid crystalline microcapsule as omnidirectional cavity to suppress optical loss [J]. Advanced Optical Materials, 2020, 8(6): 1901363.

[29] HUMAR M, MUEVI I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets [J]. Optics Express, 2010, 18(26): 26995-27003.

    HUMAR M, MUEVI I. 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets [J]. Optics Express, 2010, 18(26): 26995-27003.

[30] PIRNAT G, HUMAR M, MUEVI I. Remote and autonomous temperature measurement based on 3D liquid crystal microlasers [J]. Optics Express, 2018, 26(18): 22615-22625.

    PIRNAT G, HUMAR M, MUEVI I. Remote and autonomous temperature measurement based on 3D liquid crystal microlasers [J]. Optics Express, 2018, 26(18): 22615-22625.

[31] LIN J D, HSIEH M H, WEI G J, et al. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant [J]. Optics Express, 2013, 21(13): 15765-15776.

    LIN J D, HSIEH M H, WEI G J, et al. Optically tunable/switchable omnidirectionally spherical microlaser based on a dye-doped cholesteric liquid crystal microdroplet with an azo-chiral dopant [J]. Optics Express, 2013, 21(13): 15765-15776.

[32] ZHENG Z G, LIU B W, ZHOU L, et al. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion [J]. Journal of Materials Chemistry C, 2015, 3(11): 2462-2470.

    ZHENG Z G, LIU B W, ZHOU L, et al. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion [J]. Journal of Materials Chemistry C, 2015, 3(11): 2462-2470.

[33] HUMAR M, MUEVI I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets [J]. Optics Express, 2011, 19(21): 19836-19844.

    HUMAR M, MUEVI I. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets [J]. Optics Express, 2011, 19(21): 19836-19844.

[34] JAMPANI V S R, HUMAR M, MUEVI I. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity [J]. Optics Express, 2013, 21(18): 20506-20516.

    JAMPANI V S R, HUMAR M, MUEVI I. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity [J]. Optics Express, 2013, 21(18): 20506-20516.

[35] WANG Y, LI H Y, ZHAO L Y, et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application [J]. Optics Express, 2017, 25(2): 918-926.

    WANG Y, LI H Y, ZHAO L Y, et al. Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application [J]. Optics Express, 2017, 25(2): 918-926.

[36] MUR M, SOFI J A, KVAI I, et al. Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets [J]. Optics Express, 2017, 25(2): 1073-1083.

    MUR M, SOFI J A, KVAI I, et al. Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets [J]. Optics Express, 2017, 25(2): 1073-1083.

[37] DUAN R, HAO X L, LI Y Z, et al. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode [J]. Sensors and Actuators B: Chemical, 2020, 308: 127672.

    DUAN R, HAO X L, LI Y Z, et al. Detection of acetylcholinesterase and its inhibitors by liquid crystal biosensor based on whispering gallery mode [J]. Sensors and Actuators B: Chemical, 2020, 308: 127672.

[38] WANG Y, LI H Y, ZHAO L Y, et al. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets [J]. Applied Physics Letters, 2016, 109(23): 231906.

    WANG Y, LI H Y, ZHAO L Y, et al. Tunable whispering gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets [J]. Applied Physics Letters, 2016, 109(23): 231906.

[39] ZHAO L Y, WANG Y, YUAN Y G, et al. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor [J]. Optics Communications, 2017, 402: 181-185.

    ZHAO L Y, WANG Y, YUAN Y G, et al. Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor [J]. Optics Communications, 2017, 402: 181-185.

[40] ZHANG C, FU D Y, XIA C L, et al. Lasing emission of dye-doped cholesteric liquid crystal microdroplet wrapped by polyglycerol in hollow glass microsphere [J]. Chinese Optics Letters, 2020, 18(1): 011402.

    ZHANG C, FU D Y, XIA C L, et al. Lasing emission of dye-doped cholesteric liquid crystal microdroplet wrapped by polyglycerol in hollow glass microsphere [J]. Chinese Optics Letters, 2020, 18(1): 011402.

[41] LI Y, LUO D, CHEN R. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol [J]. Applied Optics, 2016, 55(31): 8864-8867.

    LI Y, LUO D, CHEN R. Random lasing from cholesteric liquid crystal microspheres dispersed in glycerol [J]. Applied Optics, 2016, 55(31): 8864-8867.

[42] UCHIDA Y, TAKANISHI Y, YAMAMOTO J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells [J]. Advanced Materials, 2013, 25(23): 3234-3237.

    UCHIDA Y, TAKANISHI Y, YAMAMOTO J. Controlled fabrication and photonic structure of cholesteric liquid crystalline shells [J]. Advanced Materials, 2013, 25(23): 3234-3237.

[43] CHEN L J, LI Y N, FAN J, et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch [J]. Advanced Optical Materials, 2014, 2(9): 845-848.

    CHEN L J, LI Y N, FAN J, et al. Photoresponsive monodisperse cholesteric liquid crystalline microshells for tunable omnidirectional lasing enabled by a visible light-driven chiral molecular switch [J]. Advanced Optical Materials, 2014, 2(9): 845-848.

[44] CHEN L J, GONG L L, LIN Y L, et al. Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers [J]. Lab on a Chip, 2016, 16(7): 1206-1213.

    CHEN L J, GONG L L, LIN Y L, et al. Microfluidic fabrication of cholesteric liquid crystal core-shell structures toward magnetically transportable microlasers [J]. Lab on a Chip, 2016, 16(7): 1206-1213.

[45] LIN Y L, GONG L L, CHE K J, et al. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells [J]. Applied Physics Letters, 2017, 110(22): 223301.

    LIN Y L, GONG L L, CHE K J, et al. Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells [J]. Applied Physics Letters, 2017, 110(22): 223301.

[46] LEE S S, KIM J B, KIM Y H, et al. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals [J]. Science Advances, 2018, 4(6): eaat8276.

    LEE S S, KIM J B, KIM Y H, et al. Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals [J]. Science Advances, 2018, 4(6): eaat8276.

[47] PARK S, LEE S S, KIM S H. Photonic multishells composed of cholesteric liquid crystals designed by controlled phase separation in emulsion drops [J]. Advanced Materials, 2020.DOI: 10.1002/adma.202002166.

    PARK S, LEE S S, KIM S H. Photonic multishells composed of cholesteric liquid crystals designed by controlled phase separation in emulsion drops [J]. Advanced Materials, 2020.DOI: 10.1002/adma.202002166.

罗炜程, 车凯军, 李森森, 陈鹭剑. 胆甾相液晶多重乳液微结构激光特性的研究进展[J]. 液晶与显示, 2020, 35(7): 697. LUO Wei-cheng, CHE Kai-jun, LI Sen-sen, CHEN Lu-jian. Review on laser properties of cholesteric liquid crystals with multiple-emulsion microstructures[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 697.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!