光学学报, 2013, 33 (7): 0712001, 网络出版: 2013-04-28   

光栅条纹光电信号正弦性偏差的自动补偿

Automatic Compensation of Sine Deviation for Grating Fringe Photoelectric Signal
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了提高光电轴角编码器的细分精度,提出一种光栅条纹光电信号正弦性偏差的自动补偿方法,依据编码器精码转换的方波信息实现精码信号的自适应采样,完成光电编码器精码时域信号向等间隔空域信号的转换;通过实际采集24位光电编码器周期光栅条纹光电信号,并对其离散幅值序列做频谱分析,揭示了高精度光电编码器信号正弦性偏差的主要谐波成分并建立波形方程;根据光栅条纹光电信号的数学模型及幅值细分原理,建立了信号细分误差的补偿模型;采用粒子群优化算法辨识波形方程中的7个待定参量,并对信号进行修正。应用细分误差补偿模型对补偿前后的细分误差进行分析,结果表明,编码器光电信号的细分误差峰值由0.923″降低到0.316″。该方法可实际应用于编码器系统,能够提高编码器的环境适应性和测角可靠性。
Abstract
In order to improve the subdivision accuracy of photoelectric rotary encoder, the method of automatic compensation of sine deviation for the grating fringe photoelectric signal is proposed. According to square wave information from precise code conversion, adaptive sampling of precise code signal is realized. The transformation process of precise code time domain signal to equal interval spatial domain signal is completed. Periodic grating fringe photoelectric signal of 24 bit photoelectric encoder is actually collected and frequency spectral analysis of discrete amplitude sequence for photoelectric signal is completed. The main harmonic components of sine deviation for high precision photoelectric encoder signal are revealed and waveform equation is established. Based on the mathematical model of grating fringe photoelectric signal and amplitude subdivision principle, compensation model of subdivision error is established. Seven undefined parameters of signal model are identified using particle swam optimization (PSO) and the signal is corrected. Uncompensated and compensated subdivision error are analyzed using subdivision error compensation model. The experimental results show that the peak value of subdivision error is reduced from 0.923″ to 0.316″. This method can actually be used in encoder system, which improves environmental adaptability and angle measurement reliability of the encoder.
参考文献

[1] 崔德胜, 郭伟玲, 崔碧峰 等. 高显色LED的制备及其变温特性[J]. 光学学报, 2012, 32(1): 0123005

    Cui Desheng, Guo Weiling, Cui Bifeng et al.. Preparation and temperature-variation properties of high color rendering index LED [J]. Acta Optica Sinica, 2012, 32(1): 0123005

[2] 张建锋, 曹学东, 吴时彬 等. 温度对高精度光学玻璃折射率均匀性检测的影响[J]. 激光与光电子学进展, 2012, 49(1): 011203

    Zhang Jiangfeng, Cao Xuedong, Wu Shibin et al.. Temperature effect on high precision measurement of refractive index homogeneity of optical glass[J]. Laser & Optoelectronics Progress, 2012, 49(1): 011203

[3] 叶盛祥. 光电位移精密测量技术[M]. 成都:四川科学技术出版社, 2003

    Ye Shengxiang. Accurate Measurement about Photoelectric Shift[M]. Chengdu: Sichuan Science and Technology Press, 2003

[4] 王显军. 光电轴角编码器细分信号误差及精度分析[J]. 光学 精密工程, 2012, 20(2): 379~386

    Wang Xianjun. Errors and precision analysis of subdivision signals for photoelectric angle encoder [J]. Optics and Precision Engineering, 2012, 20(2): 379~386

[5] 龙科慧, 杨守旺, 何金琪 等. 光电编码器温度特性分析与补偿方法[J]. 光学学报, 2009, 29(1): 320~323

    Long Kehui, Yang Shouwang, He Jinqi et al.. Temperature characteristics and compensation of photoelectrical encoder [J]. Acta Optica Sinica, 2009, 29(1): 320~323

[6] 吕恒毅, 刘杨, 王延东 等. 叠栅条纹正交偏差的智能补偿方法[J]. 仪器仪表学报, 2010, 31(9): 2075~2080

    Lü Hengyi, Liu Yang, Wang Yandong et al.. Intelligent compensation method of Moire fringe orthogonality deviation[J]. Chinese J. Scientific Instrument, 2010, 31(9): 2075~2080

[7] Dario Mancini, Annalina Auricchio, Massimo Brescia et al.. Encoder system design: strategies for error compensation[C]. SPIE, 2008, 3351: 380~386

[8] Michael Warner, Victor Krabbendam, German Schumacher. Adaptive periodic error correction for heidenhain tape encoders[C]. SPIE, 2008, 7012: 70123N

[9] Tsukasa Watanabe, Hiroyuki Fujimoto, Kan Nakayama et al.. Automatic high precision calibration system for angle encoder[C]. SPIE, 2001, 4401: 267~274

[10] Yuji Matsuzoe, Nobuhiko Tsuji. Error dispersion algorithms to improve angle precision for an encoder [J]. Opt. Eng., 2002, 41(9): 2282~2289

[11] K. K. Tan, H. X. Zhou et al.. New interpolation method for quadrature encoder signals [J]. IEEE Trans. Instrum. Meas, 2002, 51(5): 1073~1079

[12] S. K. Kaul, A. K. Tickoo, R. Koul et al.. Improving the accuracy of low-cost resolver-based encoders using harmonic analysis[J]. Nuclear Instruments & Methods in Physics Research, 2008, 586(2): 345~355

[13] Chunhai Wang, Guoxiong Zhang, Shangqi Guo et al.. Auto correction of interpolation errors in optical encoders[C]. SPIE, 2002, 2718: 439~447

[14] 洪喜, 续志军, 杨宁. 基于径向基函数网络的光电编码器误差补偿法[J]. 光学 精密工程, 2008, 16(4): 598~604

    Hong Xi, Xu Zhijun, Yang Ning. Error compensation of optical encoder based on RBF network [J]. Optics and Precision Engineering, 2008, 16(4): 598~604

[15] 陈亮, 杨吉斌, 张雄伟. 信号处理算法的实时DSP实现[M]. 北京:电子工业出版社,2008

    Chen Liang, Yang Jibin, Zhang Xiongwei. Coordinate Measuring Machine[M]. Beijing: Electronics Industry Press, 2008

[16] 肖焱山, 曹益平, 武迎春 等. 基于傅里叶频谱分析的相位测量轮廓术系统Gamma非线性校正方法[J]. 光学学报, 2012, 32(12): 1212004

    Xiao Yanshan, Cao Yiping, Wu Yingchun et al.. Gamma nonlinearity correction based on Fourier spectrum analysis for phase measuring profilometry[J]. Acta Optica Sinica, 2012, 32(12): 1212004

[17] W. S. Lee, Y. T. Chen, T. H. Wu. Optimization for ice-storage air-conditioning system using particle swarm algorithm[J]. Applied Energy, 2009, 86(9): 1589~1595

[18] R. C. Eberhart, Y. H. Shi. Particle swarm optimization: developments, applications and resources[C]. Soul: Congress on Evolutionary Computation 2001, 2001, 1: 81~86

[19] 韦芙芽, 刘洪武, 付春林. 基于量子粒子群优化算法的光纤光栅参数重构[J]. 中国激光, 2011, 38(2): 0205004

    Wei Fuya, Liu Hongwu, Fu Chunlin. Reconstruction of fiber grating parameters from reflectivity using quantum particle swarm optimization algorithm[J]. Chinese J. Lasers, 2011, 38(2): 0205004

[20] Riccardo Poli, James Kennedy, Tim Blackwell. Particle swarm optimization: an overview [J]. Swarm Intelligence, 2007, 1(1): 33~57

[21] 赵长海. 高精度光电编码器动态细分误差的测量方法研究[D]. 北京: 中国科学院大学, 2008

    Zhao Changhai. The Research of Measure Method of Dynamic Interpolation Errors of High Precision Photoelectric Encoder[D]. Beijing: University of Chinese Academy of Sciences, 2008

高旭, 万秋华, 卢新然, 孙莹. 光栅条纹光电信号正弦性偏差的自动补偿[J]. 光学学报, 2013, 33(7): 0712001. Gao Xu, Wan Qiuhua, Lu Xinran, Sun Ying. Automatic Compensation of Sine Deviation for Grating Fringe Photoelectric Signal[J]. Acta Optica Sinica, 2013, 33(7): 0712001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!