光学学报, 2016, 36 (11): 1133001, 网络出版: 2016-11-08   

固态体积式真三维显示中的灰度级修正研究

Study on Gray Scale Correction in Solid-State Three Dimensional Volumetric Display
作者单位
1 合肥工业大学光电技术研究院现代显示技术省部共建国家重点实验室, 安徽 合肥 230009
2 合肥工业大学计算机与信息学院, 安徽 合肥 230009
3 合肥工业大学科学技术研究院, 安徽 合肥 230009
摘要
基于聚合物稳定胆甾相液晶(PSCT)光阀的固态体积式真三维(3D)显示体,在状态转换瞬间其雾度和透射率的非线性变化会引起成像亮度变化,并引起深度图像间的串扰。通过分析PSCT光阀的光电响应特性和显示体驱动方式,推导出显示体成像亮度的变化函数,并据此计算出子帧亮度和灰度级偏差。通过调整光阀的驱动时序和重新分配数字微镜器件子帧,结合伽马校正,实现了灰度级的修正。给出了在真3D样机上显示的灰度级修正前后的3D成像,实验结果表明,该方法在亮度损失较小(约6%)的前提下,有效地修正了真三维成像的灰度级偏差,并基本消除了深度图像间的串扰,在一定程度上提高了3D显示的成像质量。
Abstract
The screen of solid-state volumetric three-dimensional (3D) display system is based on a polymer stabilized cholesteric texture normal-mode (PSCT) shutter array structure. The nonlinear variation of haze and transmittance of the shutter causes the image luminance deviation, as well as the image crosstalk between adjacent shutters. The photoelectric response characteristic and driving method of the PSCT shutter array are analyzed. Based on the analysis, the image luminance variation function of shutter array is derived, and thus the luminance of sub-frames and grayscale deviations are calculated. Grayscale correction is implemented through adjusting the driving timing of shutters and reallocating sub-frames, combined with Gamma correction. 3D images before and after grayscale correction are displayed on the solid-state 3D volumetric display system. Experimental results indicate that the proposed method can correct the grayscale deviations efficiently and eliminate the image crosstalk between adjacent shutters mainly at the cost of a minor luminance loss (about 6%). The proposed approach can improve the 3D image quality to some extent.
参考文献

[1] Holliman N S, Dodgson N A, Favalora G E, et al. Three-dimensional displays: A review and applications analysis[J]. IEEE Transactions on Broadcasting, 2011, 57(2): 362-371.

[2] 王崝, 曹良才, 张浩, 等. 基于体全息的三维显示方法[J]. 中国激光, 2015, 42(9): 0909003.

    Wang Zheng, Cao Liangcai, Zhang Hao, et al. Three-dimensional display based on volume holography[J]. Chinese J Lasers, 2015, 42(9): 0909003.

[3] Son J Y, Javidi B, Kwack, K D. Methods for displaying three-dimensional images[J]. Proceedings of the IEEE, 2006, 94(3): 502-523.

[4] 刘永春, 龚华军, 耿征, 等. 基于全息定向散射屏的光场三维成像系统研究[J]. 激光与光电子学进展, 2015, 52(10): 101103.

    Liu Yongchun, Gong Huajun, Geng Zheng, et al. Research of light-field 3D imaging systems based on holographic directional scattering-screen[J]. Laser & Optoelectronics Progress, 2015, 52(10): 101103.

[5] Zhao T, Sang X, Yu X, et al. High dense views auto-stereoscopic three-dimensional display based on frontal projection with LLA and diffused screen[J]. Chinese Optics Letters, 2015, 13(1): 011001.

[6] 董建文, 陈定尘, 庞晓宁, 等. 空域计算全息三维成像技术[J]. 中国激光, 2014, 41(7): 0701001.

    Dong Jianwen, Chen Dingchen, Pang Xiaoning, et al. Spatial-domain computer generated holographic three-dimensional display[J]. Chinese J Lasers, 2014, 41(7): 0701001.

[7] Lu G, Wang Q, Wang J, et al. Multi-view 3D display with high brightness based on a parallax barrier[J]. Chinese Optics Letters, 2013, 11(12): 121101.

[8] 林远芳, 刘旭, 刘向东, 等. 基于旋转二维发光二极管阵列的体三维显示系统[J]. 光学学报, 2003, 23(10): 1158-1162.

    Ling Yuanfang, Liu Xu, Liu Xiangdong, et al. Three-dimensional volumetric display system utilizing a rotating two-dimensional LED array[J]. Acta Optica Sinica, 2003, 23(10): 1158-1162.

[9] Sullivan A. Depth cube solid-state 3D volumetric display[C]. SPIE, 2004, 5291: 279-283.

[10] 谢小燕, 刘旭, 林远芳. 体三维显示系统中基于几何近似法的灰度偏差研究[J]. 光学学报, 2009, 29(6): 1508-1513.

    Xie Xiaoyan, Liu Xu, Lin Yuanfang. Study on gray scale deviations in three-dimensional volumetric display system based on geometric approximation[J]. Acta Optica Sinica, 2009, 29(6): 1508-1513.

[11] Yin Y, Li W, Cao H, et al. Effects of monomer structure on the morphology of polymer network and the electro-optical property of reverse-mode polymer-stabilized cholesteric texture[J]. Journal of Applied Polymer Science, 2009, 111(3): 1353-1357.

[12] Natarajan L V, Beckel E R, Tondiglia V P, et al. The effect of weak polymer stabilization on the switching properties of cholesteric liquid crystals[J]. Molecular Crystals and Liquid Crystals, 2009, 502(1): 143-153.

[13] Sun J, Chen Y, Wu S. Submillisecond-response and scattering-free infrared liquid crystal phase modulators[J]. Optics Express, 2012, 20(18): 20124.

[14] Brennesholtz M S, Stupp E H. Projection displays[M]. Hoboken: Wiley Publishing, 2008: 327-328.

[15] Deutsch S, Visual displays using pseudorandom dot scan[J]. IEEE Transactions on Communications, 1973, 21(1): 65-75.

[16] Hecht S. The visual discrimination of intensity and the Weber-Fechner law[J]. Journal of General Physiology, 1924, 7(2): 235-267.

[17] Wandell B, Gamal A EI, Girod B. Common principles of image acquisition systems and biological vision[J]. Proceedings of IEEE, 2002, 90(1): 5 -17.

方勇, 芦云龙, 吴华夏, 吕国强, 胡跃辉. 固态体积式真三维显示中的灰度级修正研究[J]. 光学学报, 2016, 36(11): 1133001. Fang Yong, Lu Yunlong, Wu Huaxia, Lü Guoqiang, Hu Yuehui. Study on Gray Scale Correction in Solid-State Three Dimensional Volumetric Display[J]. Acta Optica Sinica, 2016, 36(11): 1133001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!