红外与毫米波学报, 2016, 35 (6): 676, 网络出版: 2017-01-12  

生长于Pt/Ti/SiO2/Si衬底的ZnxNi(1-x)Mn2O4薄膜的结构与光学性质

The structural and optical properties of ZnxNi(1-x)Mn2O4 films grown on Pt/Ti/SiO2/Si substrate
作者单位
1 中国科学院上海技术物理研究所 红外物理国家重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 上海理工大学 材料科学与工程学院, 上海 200093
摘要
采用化学溶液法在Pt/Ti/SiO2/Si衬底上生长了ZnxNi1-xMn2O4(ZNMO, x=0, 0.05, 0.1, 0.15, 0.2, 0.25)尖晶石氧化物薄膜。X射线衍射(XRD)与场发射扫描电子显微镜(FESEM) 分析结果表明, Zn的掺杂浓度对ZNMO薄膜的结晶性和微结构有明显影响。用椭圆偏振光谱仪测量分析了ZNMO薄膜在300-1 100 nm波段的光学常数, 并讨论了Zn掺杂对折射率n和消光系数k的影响。在薄膜的拉曼光谱中观测到两个峰A1g与F2g, A1g模式的相对峰位随着Zn的掺杂浓度x的增大而减小。由于晶格应变与晶格失配, 拉曼峰峰位随Zn掺杂浓度的变化而轻微移动。
Abstract
The spinel oxide ZnxNi1-xMn2O4 (ZNMO, x=0, 0.05, 0.1, 0.15, 0.2, 0.25) films have been grown on Pt/Ti/SiO2/Si substrate by chemical solution deposition (CSD) method. The crystallization and microstructural features of ZNMO films are studied by x-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM) analysis, respectively. The results show that the structural property of ZNMO films is affected by Zn concentration. The optical constants of ZNMO films have been analyzed by spectroscopic ellipsometry measurements in the wavelength range of 300-1 100 nm. The changes of the refractive index n and extinction coefficient k caused by Zn substituting are discussed. The A1g and F2g modes have been observed in Raman spectra. The relative intensity of the A1g mode decreases with increasing Zn concentration. The Raman peak positions shift slightly with Zn concentration x, which might result from lattice strain and lattice mismatch.
参考文献

[1] Feteira A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective [J]. J. Am. Ceram. Soc., 2009, 92(5):967-983.

[2] Park K, Microstructure and electrical properties of Ni1.0Mn2xZrxO4 (0≤x≤1.0) negative temperature coefficient thermistors [J]. Mater. Sci. Eng., B, 2003, 104(12):9-14.

[3] Ryu J, Park D S, Schmidt R. Inplane impedance spectroscopy in aerosol deposited NiMn2O4 negative temperature coefficient thermistor films [J]. J. Appl. Phys., 2011, 109(11):113722.

[4] Fritscha J S S, Brieua M, Couderc J J, et al. Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient(NTC) thermistors [J]. Solid State Ionics, 1998, 109(s34): 229-237.

[5] Aleksic O S, Nikolic M V, Lukovic M D, et al. Preparation and characterization of Cu and Zn modified nickel manganite NTC powders and thick film thermistors [J]. Mater. Sci. Eng., B, 2013, 178(3):202-210.

[6] sbrink S, Was′kowska A, Drozd M, et al. Physical properties and Xray diffraction of a NiMn2O4 single crystal below and above the ferrimagnetic transition at Tc=145 K [J]. J. Phys. Chem. Solids, 1997, 58(5):725-729.

[7] Schmidt R, Basu A, Brinkman A W, et al. Electronhopping modes in NiMn2O 4+δ materials [J]. Appl. Phys. Lett., 2005, 86(7) ;073501.

[8] Wei S H, Zhang S B. Firstprinciples study of cation distribution in eighteen closedshell AIIBIII2O4 and AIVBII2O4 spinel oxides[J]. Phys Rev B, 2001, 63(4):045112.

[9] Baykal A, Güner S, Demir A, et al. Effect of zinc substitution on magnetooptical properties of Mn1xZnxFe2O4/SiO2 nanocomposites [J]. Ceram. Int., 2014, 40(8): 13401-13408.

[10] Buvaneswari G, Aswathy V, Rajakumari R. Comparison of color and optical absorbance properties of divalent ion substituted Cu and Zn aluminate spinel oxides synthesized by combustion method towards pigment application [J]. Dyes Pigments, 2015, 123:413-419.

[11] Mukherjee K, Kumar K, Banerjee A. Observation of different spin behavior with temperature variation and Cr substitution in a multiferroic compound YMn2O5 [J]. Solid State Commun, 2013, 153(1):66-70.

[12] Park K, Lee J K, Kim S J, et al. The effect of Zn on the microstructure and electrical properties of Mn1.17xNi0.93Co0.9ZnxO4(0≤x≤0.075) NTC thermistors [J]. Journal of Alloys and Compounds, 2009, 467(12):310-316.

[13] Wei Q M, Li J B, Chen Y J, et al. Xray study of cation distribution in NiMn1xFe2xO4 ferrites [J]. Mater Charact, 2001, 47(34):247-252.

[14] Cheng F, Wang J, Zhang H, et al. Phase transition and electrical properties of Ni1x ZnxMn2O4(0≤x≤1.0) NTC ceramics [J]. J. Mater. Sci. Mater. Electron., 2014, 26(3):1374-1380.

[15] Takahashi J, Miura A, Itoh H, et al. Phase change and electrical resistivity of Zn–Mn–Ni–Obased NTC thermistors produced using IZC powder recycled from used dry batteries [J]. Ceram. Int., 2008, 34(4):853-857.

[16] Chanel C, GuillemetFritsch S, Sarrias J, et al. Microstructure and electrical properties of NiZn manganite ceramics [J]. Int J Inorg Mater, 2000, 2(23):241-247.

[17] GuillemetFritsch S, Baudour J L, Chanel C, et al. Xray and neutron diffraction studies on nickel zinc manganite Mn2.35xNi0.65ZnxO4 powders [J]. Solid State Ionics, 2000, 132(12):63-69.

[18] Zhao C, Zhao Y, Wang Y. Annealing on the electrical properties of Ni0.75Mn2.25O4 and Zn0.8Ni0.75Mn1.45O4 NTC ceramics[J]. Solid State Commun, 2012, 152(7): 593-595.

[19] Zhang L B, Hou Y, Zhou W, et al. Investigation on optical properties of NiMn2O4 films by spectroscopic ellipsometry [J]. Solid State Commun, 2013, 159:32-35.

[20] Zhao C, Wang B, Yang P, et al. Effects of Cu and Zn codoping on the electrical properties of Ni0.5Mn2.5O4 NTC ceramics [J]. J. Eur. Ceram. Soc., 2008, 28(1):35-40.

[21] Fujiwara H, Kondo M. Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3:Snstudied by spectroscopic ellipsometry: Analysis of freecarrier and bandedge absorption [J]. Phys Rev B, 2005, 71(7):075109.

[22] Jellison G E, Modine F A. Parameterization of the optical functions of amorphous materials in the interband region [J]. Appl. Phys. Lett.,1996, 69(3):371.

[23] Ye C, Pan S S, Teng X M, et al. Preparation and optical properties of nanocrystalline thin films in the ZnOTiO2 system [J]. Appl. Phys.A, 2007, 90(2):375-378.

[24] Hu Z, Wang G, Huang Z, et al. Optical properties of Bi3.25La0.75Ti3O12 thin films using spectroscopic ellipsometry [J]. J. Appl. Phys., 2003, 93(7):3811.

[25] Hou Y, Xue J, Huang Z, et al. Structurerelated optical properties of Bi4xLaxTi3O12 thin films grown on Pt/Ti/SiO2/Si substrate [J]. Thin Solid Films, 2008, 517(2): 901-904.

[26] Hu Z, Wang G, Huang Z, et al. Effects of thickness on the infrared optical properties of Ba0.9Sr0.1TiO3 ferroelectric thin films [J]. Appl Phys Amater, 2004, 78(5):757-760.

[27] Lakhdar M H, Ouni B, Amlouk M. Thickness effect on the structural and optical constants of stibnite thin films prepared by sulfidation annealing of antimony films [J]. Optik: Int. J. Light Electron Opt., 2014, 125(10):2295-2301.

[28] Julien C, Massot M, Rangan S, et al. Study of structural defects in γMnO2 by Raman spectroscopy [J]. J. Raman Spectrosc., 2002, 33(4):223-228.

[29] Ma C, Ren W, Wang L, et al. Effects of cation distribution on optical properties of Mn–Co–Ni–O films [J]. Mater. Lett., 2015, 153:162-164.

[30] Wei Y, Nam K, Kim K, et al. Spectroscopic studies of the structural properties of Ni substituted spinel LiMn2O4 [J]. Solid State Ionics, 2006, 177(12):29-35.

[31] Chaturvedi A, Sathe V. Thickness dependent Raman study of epitaxial LaMnO3 thin films [J]. Thin Solid Films, 2013, 548:75-80.

[32] Seong M J, Chun S H, Cheong H M,et al. Spectroscopic determination of hole density in the ferromagnetic semiconductor Ga1xMnxAs [J]. Phys Rev B, 2002, 66(3):033202.

[33] Steele J A, Lewis R A, Henini M, et al. Raman scattering studies of strain effects in (100) and (311)B GaAs1xBix epitaxial layers [J]. J. Appl. Phys., 2013, 114(19):193516.

王万胜, 侯云, 张增辉, 周炜, 高艳卿, 吴敬, 褚君浩. 生长于Pt/Ti/SiO2/Si衬底的ZnxNi(1-x)Mn2O4薄膜的结构与光学性质[J]. 红外与毫米波学报, 2016, 35(6): 676. WANG Wan-Sheng, HOU Yun, ZHANG Zeng-Hui, ZHOU Wei, GAO Yan-Qing, WU Jing, CHU Jun-Hao. The structural and optical properties of ZnxNi(1-x)Mn2O4 films grown on Pt/Ti/SiO2/Si substrate[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 676.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!