光学学报, 2013, 33 (5): 0531001, 网络出版: 2013-05-07   

溶胶凝胶法制备用于氟磷酸盐玻璃的氟化镁减反射膜

Prepared by Sol-Gel Method Magnesium Fluoride Anti-Reflective Films for Fluorophosphate Glass
作者单位
1 中国科学院山西煤炭化学研究所,炭材料重点实验室, 山西 太原 030001
2 中国科学院大学, 北京 100049
摘要
以甲醇镁与氢氟酸为原料,用溶胶凝胶法,在惰性气氛和常温常压条件下制备了稳定的MgF2溶胶。利用透射电子显微镜观察溶胶颗粒的形貌与尺寸,结果显示溶胶颗粒是由10 nm左右的晶粒聚集而成。X射线衍射分析表明,凝胶粉末和薄膜为典型四方晶相结构的MgF2,晶粒尺寸为8.9 nm。通过提拉法在精密加工的氟磷酸盐玻璃基底上制备MgF2减反射薄膜。采用原子力显微镜观察薄膜的表面形貌,膜层表面较平整,其均方根粗糙度最低为1.6 nm。薄膜的紫外可见光谱测试表明膜层对氟磷酸盐玻璃基底具有较好光学减反效果,在351 nm波长处透射率最高可增加6.49%,大大提高了氟磷酸盐玻璃的透射率。使用351 nm脉冲(脉宽8 ns)激光测试薄膜的激光损伤阈值,薄膜和基底的损伤阈值都高于35 J·cm-2。
Abstract
Stable MgF2 sols are synthesized by sol-gel method under nitrogen atmosphere at room temperature, with magnesium methoxide and hydrofluoric acid aqueous solution as reactants. Characterized by transmission electron microscopy, MgF2 sols are accumulated by irregular particles of about 10 nm diameter. The X-ray diffraction results that xerogels and films all show tetragonal crystalline MgF2 and the average grain size is about 8.9 nm. With prepared MgF2 sols, MgF2 anti-reflective films are dip-coated on well-polished and well-cleared fluorophosphate glass substrates. Atomic force microscope images of films indicate that the surfaces of films are very smooth, and the root mean square roughness is as small as 1.6 nm. At 351 nm wavelength, the transmittance of fluorophosphate glass coated by anti-reflective film is 6.49% higher than that of the substrate. The laser damage thresholds of films and substrate are both higher than 35 J·cm-2, tested by 351 nm pulse laser (8 ns pulse width).
参考文献

[1] S. E. Stokowski, W. E. Martin, S. M. Yarema. Optical and lasing properties of fluorophosphate glass [J]. J. Non-Cryst Solids, 1980, 40(1-3): 481~487

[2] Gan Fuxi. Optical properties of fluoride glasses: a review [J]. J. Non-Cryst Solids, 1995, 184: 9~20

[3] N. Rigout, J. L. Adam, J. Lucas. Chemical and physical compatibilities of fluoride and fluorophosphate glasses [J]. J. Non-Cryst Solids, 1995, 184: 319~323

[4] G. A. Kumar, E. De la Rosa-Cruz, A. Martinez et al.. Influence of borate content on the radiative properties of Nd3+ ions in fluorophosphate glasses [J]. J. Phys. Chem. Solids, 2003, 64(1): 69~76

[5] 张军杰, 何冬冰, 段忠超 等. 氟磷酸盐玻璃的应用研究进展[J]. 激光与光电子学进展, 2005, 42(7): 12~16,41

    Zhang Junjie, He Dongbing, Duan Zhongchao et al.. Progress of applied study on fluorophosphates glasses [J]. Laser & Optoelectronics Progress, 2005, 42(7): 12~16,41

[6] 薛春荣, 易葵, 魏朝阳 等. 真空紫外到深紫外波段基底材料的光学特性[J]. 强激光与粒子束, 2009, 21(2): 287~290

    Xue Chunron, Yi Kui, Wei Chaoyan et al.. Optical properties of vacuum ultraviolet and deep ultraviolet region substrate materials [J]. High Power Laser and Particle Beams, 2009, 21(2): 287~290

[7] J. M. Ko, Y. Terada, H. J. Ko et al.. Epitaxial growth of NdF3Er3+ film on CaF2 (111) substrate by molecular beam epitaxy [J]. J. Cryst Growth, 1998, 192(1): 157~163

[8] 李晨松, 徐廷献. 无机薄膜的制备技术[J]. 硅酸盐通报, 2003, 22(2): 21~25, 56

    Li Chensong, Xu Tingxian. Preperation of the inorganic film [J]. Bulletin of the Chinese Ceramic Society, 2003, 22(2): 21~25, 56

[9] D. B. John, B. Cédric, N. Lionel. Thermally induced porosity in CSD MgF2-based optical coatings: an easy method to tune the refractive index [J]. Chem. Mater., 2008, 20(17): 5550~5556

[10] F. Shinobu, T. Munehiro, K. Toshio. Controlling factors for the conversion of trifluoroacetate sols into thin metal fluoride coatings [J]. J. Sol-Gel Sci. & Technol., 2000, 19(1-3): 311~314

[11] F. Shinobu, K. Toshio, T. Munehiro. Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method [J]. Thin Solid Films, 1997, 304(1): 252~255

[12] M. Tsuyoshi, I. Hitoshi, M. Izumi et al.. Investigations of MgF2 optical thin films prepared from autoclaved sol [J]. J. Sol-Gel Sci. & Technol., 2004, 32(1-3): 161~165

[13] 崔延霞, 张磊, 徐耀 等. 溶胶-凝胶法MgF2紫外增透膜的制备和性能研究[J]. 强激光与粒子束, 2008, 20(3): 401~405

    Cui Yanxia, Zhang Lei, Xu Yao et al.. Preparation and properties of MgF2 anti-reflective thin film by sol-gel process [J]. High Power Laser and Particle Beams, 2008, 20(3): 401~405

[14] F. Y. Wang, Y. F. Zhu, Y. Jiang et al.. Fabrication and properties of MgF2 composite film modified with carbon nanotubes [J]. J. Sol-Gel Sci. & Technol., 2011, 58(3): 587~593

[15] E. Kemnitz, U. Groβ, S. Rüdiger et al.. Amorphous metal fluorides with extraordinary high surface areas [J]. Angew Chem. Int. Ed., 2003, 42(35): 4251~4254

[16] H. Krüger, E. Kemnitz, A. Hertwig et al.. Transparent MgF2-films by sol-gel coating: synthesis and optical properties [J]. Thin Solid Films, 2008, 516(12): 4175~4177

[17] H. Krüger, E. Kemnitz, A. Hertwig et al.. Moderate temperature sol-gel deposition of magnesium fluoride films for optical UV-applications: a study on homogeneity using spectroscopic ellipsometry [J]. Phys. Stat. Sol. (a), 2008, 205(4): 821~824

[18] S. Wuttke, A. Lehmann, G. Scholz. Investigation of the fluorolysis of magnesium methoxide [J]. Dalton Trans., 2009, (24): 4729~4734

[19] H. Krüger, A. Hertwig, U. Beck et al.. Low temperature sol-gel metal oxide and fluoride layer stacks for optical applications [J]. Thin Solid Films, 2010, 518(21): 6080~6086

[20] J. Noack, F. Emmerling, H. Kirmse et al.. Sols of nanosized magnesium fluoride: formation and stabilisation of nanoparticles [J]. J. Mater. Chem., 2011, 21(38): 15015~15021

[21] J. Noack, K. Scheurell, E. Kemnitz et al.. MgF2 antireflective coatings by sol-gel processing: film preparation and thermal densification [J]. J. Mater. Chem., 2012, 22(35): 18535~18541

[22] P. A. Sermon, R. Badheka. MgF2 xerogels [J]. J. Sol-Gel Sci. & Technol., 2004, 32(1-3): 149~153

[23] A. A. Rywak, J. M. Burlitch. Sol-gel synthesis of nanocrystalline magnesium fluoride: its use in the preparation of MgF2 films and MgF2-SiO2 composites [J]. Chem. Mater., 1996, 8(1): 60~67

[24] Zheng Zhi, Zu Xiaotao, Jiang Xiaodong et al.. Effect of HF etching on the surface quality and laser-induced damage of fused silica [J]. Opt. & Laser Technol., 2012, 44(4): 1039~1042

[25] J. Neauport, P. Cormont, L. Lamaignère et al.. Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm [J]. Opt. Commun., 2008, 281(14): 3802~3805

[26] D. S. Hobbs, B. D. MacLeod. High laser damage threshold surface relief micro-structures for anti-reflection applications [C]. SPIE, 2007, 6720(68):

[27] Xu Yao, Zhang Lei, Wu Dong et al.. Abrasion-resistant solgel antireflective films with a high laser-induced damage threshold forinertial confinement fusion [J]. J. Opt. Soc. Am. B, 2005, 22(9): 1899~1910

[28] K. Yoshida, H. Yoshida, Y. Kato et al.. Highly damage resistant, broadband, hard antireflection coating for high power lasers in the ultraviolet to near-infrared wavelength regions [J]. Appl. Phys. Lett., 1985, 47(9): 911~913

[29] K. Yoshida, T. Yabe, H. Yoshida et al.. Mechanism of damage information in antireflection coatings [J]. J. Appl. Phys., 1986, 60(4): 1545~1546

[30] Gao Xiang, Feng Guoying, Han Jinghua et al.. Investigation of laser-induced damage by nanoabsorbers at the surface of fused silica [J]. Appl. Opt., 2012, 51(13): 2463~2468

[31] N. Kaiser. Resistance of coated optics to UV laser irradiation [C]. SPIE, 1994, 2253: 722~730

[32] T. W. Walker, A. H. Guenther, P. E. Nielsen. Pulsed laser-induced damage to thin-film optical coatings-part I: experimental [J]. IEEE J. Quantum Elect., 1981, 17(10): 2041~2052

胡文杰, 贾红宝, 孙菁华, 丁瑞敏, 吴东, 徐耀. 溶胶凝胶法制备用于氟磷酸盐玻璃的氟化镁减反射膜[J]. 光学学报, 2013, 33(5): 0531001. Hu Wenjie, Jia Hongbao, Sun Jinghua, Ding Ruimin, Wu Dong, Xu Yao. Prepared by Sol-Gel Method Magnesium Fluoride Anti-Reflective Films for Fluorophosphate Glass[J]. Acta Optica Sinica, 2013, 33(5): 0531001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!