强激光与粒子束, 2015, 27 (4): 041018, 网络出版: 2015-04-14   

激光诱导炽光法与消光法诊断烧蚀羽烟消光性能

Ablating soot extinction characteristics diagnosis using laser induced incandescence and light extinction methods
作者单位
西北核技术研究所 激光与物质相互作用国家重点实验室, 西安 710024
摘要
为了研究流场中碳纤维增强环氧树脂复合材料在激光辐照时产生的烧蚀羽烟对入射激光的屏蔽效应,通过对朗伯-比尔定律进行分析,得到了评价羽烟消光性能的平均质量消光系数的表达式,其与羽烟场浓度和激光透过率相关。采用激光诱导炽光法(LII)和激光消光法,搭建了羽烟消光性能联合诊断实验平台,使待测激光落于LII的激发光平面上,通过同步采集待测激光的透过率和LII信号,获得激发光平面上羽烟浓度场和激光消光比,得到羽烟在不同气流速度下的平均质量消光系数。实验得到气流速度为7,10,20 m/s时羽烟对1064 nm激光的归一化质量消光系数分别为2.51,1.08,1.00。实验发现,质量消光系数受到气流速度影响,当气流速度较低时质量消光系数曲线波动幅度大,且曲线均值较大; 当气流速度较高时质量消光系数趋于稳定且均值较小。
Abstract
In order to study the extinction effect of ablating soot produced by carbon fiber reinforced composite materials, which are located in an air flow field and are irradiated by laser, Laser induced incandescence (LII) and laser extinction methods are employed. Experiment is set up to diagnose the soot extinction characteristics combining these two methods. In the experiment, a laser light is set in the excitation plane of LII, then laser transmittance and LII signals are recorded synchronously to obtain the laser extinction ratio and soot concentration field. From these data, the mean mass extinction coefficients of soot are derived at a series of air flow velocities. The normalized mean mass extinction coefficient values of soot for 1064 nm laser are 2.51, 1.08, 1.00 at air flow velocities 7 m/s, 10 m/s, 20 m/s, respectively. When the air flow velocity is low, the amplitude of αN curve fluctuation is big, and the mean value is big too. When the air flow velocity is high, the αN curve fluctuation is slight, and the mean value is small.
参考文献

[1] 陈林柱,王立君,韦成华,等. 复合材料激光辐照实验中的吸收特性研究[J]. 功能材料, 2010(10): 1709-1711.(Chen Linzhu, Wang Lijun, Wei Chenghua, et al. Research of absorption characteristics of the composites irradiated by laser. Journal of Functional Materials, 2010(10): 1709-1711)

[2] 王以忠. 激光对碳纤维增强环氧树脂基复合材料的辐照效应[D]. 长沙: 国防科学技术大学, 2007: 6-15.(Wang Yizhong. Effects of laser irradiation to carbon fiber reinforced epoxy resin composites. Changsha: Graduate School of National University of Defense Technology, 2007: 6-15)

[3] 张永强,王伟平,唐小松,等. 两种纤维增强复合材料与连续激光耦合规律[J]. 强激光与粒子束, 2007, 19(10): 1599-1602.(Zhang Yongqiang, Wang Weiping, Tang Xiaosong, et al. Coupling rules of two fiber reinforced composites with continuous wave laser. High Power Laser and Particle Beams, 2007, 19(10): 1599-1602)

[4] 李雅娣,吴平,马喜梅,等. 碳纤维/环氧树脂复合材料层板连续激光烧蚀试验研究[J]. 纤维复合材料, 2010(2): 21-24.(Li Yadi, Wu Ping, Ma Ximei, et al. The tests of carbon fiber/epoxy laminated composites under continuous laser irradiation. Fiber Composites, 2010(2): 21-24)

[5] 陈博,万红,穆景阳,等. 重频激光作用下碳纤维/环氧树脂复合材料热损伤规律[J]. 强激光与粒子束, 2008, 20(4): 547-552.(Chen Bo, Wan Hong, Mu Jingyang, et al. Ablative mechanism of carbon-fiber/epoxy composite irradiated by repetition frequency laser. High Power Laser and Particle Beams, 2008, 20(4): 547-552)

[6] 郭亚林,梁国正,丘哲明,等. 激光参数对碳纤维复合材料质量烧蚀率的影响[J]. 复合材料学报, 2006, 23(5): 84-88.(Guo Yalin, Liang Guozheng, Qiu Zheming, et al. Effect of laser parameters on mass ablative rate of carbon fiber reinforced composite. Acta Materiae Compositae Sinica, 2006, 23(5): 84-88)

[7] 熊刚,姚强,宋蔷,等. 挥发分喷射对碳烟生成和火焰辐射的影响[J]. 燃烧科学与技术, 2012, 18(2): 104-110.(Xiong Gang, Yao Qiang, Song Qiang, et al. Effects of ejection on soot formation and flame radiation. Journal of Combustion Science and Technology, 2012, 18(2): 104-110)

[8] Johnsson J. Laser-induced incandescence for soot diagnostics-theoretical investigation and experimental development[D]. Lund: LUND University, 2012: 17-27.

[9] Frederickson K, Kearney S P, Grasser T W. Laser-induced incandescence measurements of soot in turbulent pool fires[J]. Applied Optics, 2011, 50(4): A49-A59.

[10] Witkowski D, Kondo K, Vishwanathan G, et al. Evaluation of the sooting properties of real fuels and their commonly used surrogates in a laminar co-flow diffusion flame[J]. Combustion and Flame, 2013, 160(6): 1129-1141.

[11] Schulz C, Kock B F, Hofmann M, et al. Laser-induced incandescence: Recent trends and current questions[J]. Applied Physics B, 2006, 83(3): 333-354.

[12] Melton L A. Soot diagnostics based on laser heating[J]. Applied Optics, 1984, 23(13): 2201-2208.

[13] Narayanaswamy V, Clemens N T. Simultaneous LII and PIV measurements in the soot formation region of turbulent non-premixed jet flames[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1455-1463.

[14] López-Yglesias X, Schrader P E, Michelsen H A. Soot maturity and absorption cross sections[J]. Journal of Aerosol Science, 2014, 75: 43-64.

[15] Bejaoui S, Lemaire R, Desgroux P, et al. Experimental study of the E(m,λ)/E(m,1064) ratio as a function of wavelength, fuel type, height above the burner and temperature[J]. Applied Physics B: Lasers and Optics, 2014, 116(2): 313-323.

[16] Hayashi J, Hashimoto N, Nakatsuka N, et al. Soot formation characteristics in a lab-scale turbulent pulverized coal flame with simultaneous planar measurements of laser induced incandescence of soot and Mie scattering of pulverized coal[J]. Proc of the Combustion Institute, 2013, 34(2): 2435-2443.

[17] 王宇. 电场作用下火焰中碳烟颗粒的分布与聚积规律[D]. 北京: 清华大学, 2009: 35-36.(Wang Yu. Electric field control of soot distribution and accumulation in the flame. Beijing: Tsinghua University, 2009: 35-36)

[18] Smallwood G J, Clavel D, Gareau D. Concurrent quantitative laser induced incandescence and SMPS measurements of EGR effects on particulate emissions from a TDI diesel engine[R]. SAE Technical Paper, 2002: 2715-2726.

刘卫平, 马志亮, 张振荣, 周孟莲, 韦成华. 激光诱导炽光法与消光法诊断烧蚀羽烟消光性能[J]. 强激光与粒子束, 2015, 27(4): 041018. Liu Weiping, Ma Zhiliang, Zhang Zhenrong, Zhou Menglian, Wei Chenghua. Ablating soot extinction characteristics diagnosis using laser induced incandescence and light extinction methods[J]. High Power Laser and Particle Beams, 2015, 27(4): 041018.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!