发光学报, 2020, 41 (8): 879, 网络出版: 2020-08-06   

蓝光钙钛矿发光二极管: 从材料制备到器件优化

Blue Perovskite Light-emitting Diodes: from Material Preparation to Device Optimization
作者单位
1 华北电力大学 新能源电力系统国家重点实验室, 北京 102206
2 北京化工大学 北京软物质科学与工程高精尖创新中心, 北京 100029
摘要
金属卤化物钙钛矿材料凭借其低成本、高色彩饱和度、高荧光量子产率、可调的发光波长和溶液加工等特点, 在下一代平板显示和固体照明领域极具应用前景。得益于对钙钛矿材料的设计、器件结构的优化和发光机理的深刻认识, 自2014年首次观察到室温下的钙钛矿电致发光现象以来, 绿光、红光和近红外钙钛矿电致发光二极管(PeLED)的外量子效率(EQE)目前已迅速突破了20%。然而, 作为三基色之一的蓝光PeLED发展较为缓慢, 这严重制约了全彩色PeLED的发展。最近一年来, 蓝光PeLED的效率增长显著, EQE已经超过10%。本文总结了蓝光钙钛矿材料的制备和器件结构的优化, 并对未来蓝光PeLED发展方向和所面临的问题进行了讨论, 以期促进蓝光PeLED的发展。
Abstract
Metal halide perovskite materials have great application potential in the next generation flat panel display and solid state lighting, due to their unique features such as low cost, high color saturation, high photoluminescence quantum yield, tunable emission and solution processing. Since the first observation of perovskite electroluminescence at room temperature in 2014, the external quantum efficiencies(EQEs) of green, red and near-infrared perovskite light-emitting diodes(PeLED) have rapidly exceeded 20% to date. Such rapid efficiency improvement can be ascribed to the continuous optimization of perovskite materials and device structures, as well as a deeper understanding of their luminescence mechanism. Compared with green, red and near-infrared PeLEDs, the development of blue PeLED is relatively slow, which seriously restricts the development of full-color PeLEDs. In the last year, the efficiency of blue PeLED has increased significantly, and the EQE has reached over 10%. In this review, we summarize the design and preparation of blue perovskite materials and the optimization strategies of device structure for high performance PeLEDs, and the development direction and problems of blue PeLED are discussed in the end.
参考文献

[1] BURSCHKA J,PELLET N,MOON S J,et al.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013,499(7458):316-319.

[2] CHO H,JEONG S H,PARK M H,et al.. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes [J]. Science, 2015,350(6265):1222-1225.

[3] LI X M,WANG Y,SUN H D,et al.. Amino-mediated anchoring perovskite quantum dots for stable and low-threshold random lasing [J]. Adv. Mater., 2017,29(36):1701185-1-9.

[4] TAN Z J,WU Y,HONG H,et al.. Two-dimensional (C4H9NH3)2PbBr4 perovskite crystals for high-performance photodetector [J]. J. Am. Chem. Soc., 2016,138(51):16612-16615.

[5] SUTTON R J,EPERON G E,MIRANDA L,et al.. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells [J]. Adv. Energy Mater., 2016,6(8):1502458-1-6.

[6] SHI D,ADINOLFI V,COMIN R,et al.. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals [J]. Science, 2015,347(6221):519-522.

[7] IM J H,JANG I H,PELLET N,et al.. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells [J]. Nat. Nanotechnol., 2014,9(11):927-932.

[8] ZHANG F,ZHONG H Z,CHEN C,et al.. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br,I,Cl) quantum dots:potential alternatives for display technology [J]. ACS Nano, 2015,9(4):4533-4542.

[9] PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3,X = Cl,Br,and I):novel optoelectronic materials showing bright emission with wide color gamut [J]. Nano Lett., 2015,15(6):3692-3696.

[10] LIU F,ZHANG Y H,DING C,et al.. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield [J]. ACS Nano, 2017,11(10):10373-10383.

[11] BAI Z L,ZHONG H Z. Halide perovskite quantum dots:potential candidates for display technology [J]. Sci. Bull., 2015,60(18):1622-1624.

[12] DAI X L,DENG Y Z,PENG X G,et al.. Quantum-dot light-emitting diodes for large-area displays:towards the dawn of commercialization [J]. Adv. Mater., 2017,29(14):1607022-1-22.

[13] TAN Z K,MOGHADDAM R S,LAI M L,et al.. Bright light-emitting diodes based on organometal halide perovskite [J]. Nat. Nanotechnol., 2014,9(9):687-692.

[14] LIN K B,XING J,QUAN L N,et al.. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent [J]. Nature, 2018,562(7726):245-248.

[15] CAO Y,WANG N N,TIAN H,et al.. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures [J]. Nature, 2018,562(7726):249-253.

[16] ZHAO B D,BAI S,KIM V,et al.. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes [J]. Nat. Photonics, 2018,12(12):783-789.

[17] XU W D,HU Q,BAI S,et al.. Rational molecular passivation for high-performance perovskite light-emitting diodes [J]. Nat. Photonics, 2019,13(6):418-424.

[18] SHEN Y,CHENG L P,LI Y Q,et al.. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement [J]. Adv. Mater., 2019,31(24):1901517-1-8.

[19] CHIBA T,HAYASHI Y,EBE H,et al.. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices [J]. Nat. Photonics, 2018,12(11):681-687.

[20] SHEN H B,GAO Q,ZHANG Y B,et al.. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency [J]. Nat. Photonics, 2019,13(3):192-197.

[21] LI G R,RIVAROLA F W R,DAVIS N J L K,et al.. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method [J]. Adv. Mater., 2016,28(18):3528-3534.

[22] SONG J Z,LI J H,LI X M,et al.. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Adv. Mater., 2015,27(44):7162-7167.

[23] LI Z C,CHEN Z M,YANG Y C,et al.. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5% [J]. Nat. Commun., 2019,10(1):1027-1-10.

[24] HOYE R L Z,LAI M L,ANAYA M,et al.. Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes [J]. ACS Energy Lett., 2019,4(5):1181-1188.

[25] FANG T,ZHANG F J,YUAN S C,et al.. Recent advances and prospects toward blue perovskite materials and light-emitting diodes [J]. InfoMat, 2019,1(2):211-233.

[26] DENG W,XU X Z,ZHANG X J,et al.. Organometal halide perovskite quantum dot light-emitting diodes [J]. Adv. Funct. Mater., 2016,26(26):4797-4802.

[27] YAO E P,YANG Z L,MENG L,et al.. High-brightness blue and white leds based on inorganic perovskite nanocrystals and their composites [J]. Adv. Mater., 2017,29(23):1606859-1-7.

[28] SWARNKAR A,CHULLIYIL R,RAVI V K,et al.. Colloidal CsPbBr3 perovskite nanocrystals:luminescence beyond traditional quantum dots [J]. Angew. Chem. Int. Ed., 2015,54(51):15424-15428.

[29] SCHMIDT L C,PERTEGS A,GONZLEZ-CARRERO S,et al.. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles [J]. J. Am. Chem. Soc., 2014,136(3):850-853.

[30] LI J H,XU L M,WANG T,et al.. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control [J]. Adv. Mater., 2017,29(5):1603885-1-9.

[31] YUAN M J,QUAN L N,COMIN R,et al.. Perovskite energy funnels for efficient light-emitting diodes [J]. Nature Nanotechnol., 2016,11(10):872-877.

[32] CHENG L,CAO Y,GE R,et al.. Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites [J]. Chin. Chem. Lett., 2017,28(1):29-31.

[33] JEON T,KIM S J,YOON J,et al.. Hybrid perovskites:effective crystal growth for optoelectronic applications [J]. Adv. Energy Mater., 2017,7(19):1602596-1-29.

[34] KIM Y H,KIM S,JO S H,et al.. Metal halide perovskites:from crystal formations to light-emitting-diode applications [J]. Small Methods, 2018,2(11):1800093-1-21.

[35] KUMAWAT N K,DEY A,KUMAR A,et al.. Band gap tuning of CH3NH3Pb(Br1-xClx)3 hybrid perovskite for blue electroluminescence [J]. ACS Appl. Mater. Interfaces, 2015,7(24):13119-13124.

[36] SADHANALA A,AHMAD S,ZHAO B D,et al.. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications [J]. Nano Lett., 2015,15(9):6095-6101.

[37] WANG Z B,CHENG T,WANG F Z,et al.. Morphology engineering for high-performance and multicolored perovskite light-emitting diodes with simple device structures [J]. Small, 2016,12(32):4412-4420.

[38] WANG Z B,LUO Z,ZHAO C Y,et al.. Efficient and stable pure green all-inorganic perovskite CsPbBr3 light-emitting diodes with a solution-processed NiOx interlayer [J]. J Phys. Chem. C, 2017,121(50):28132-28138.

[39] WANG H L,ZHAO X F,ZHANG B H,et al.. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films [J]. J. Mater. Chem. C, 2019,7(19):5596-5603.

[40] DU P P,LI J H,WANG L,et al.. Vacuum-deposited blue inorganic perovskite light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2019,11(50):47083-47090.

[41] LI X M,WU Y,ZHANG S L,et al.. CsPbX3 quantum dots for lighting and displays:room-temperature synthesis,photoluminescence superiorities,underlying origins and white light-emitting diodes [J]. Adv. Funct. Mater., 2016,26(15):2435-2445.

[42] NEDELCU G,PROTESESCU L,YAKUNIN S,et al.. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3,X=Cl,Br,I) [J]. Nano Lett., 2015,15(8):5635-5640.

[43] ZHU Z Y,YANG Q Q,GAO L F,et al.. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots [J]. J. Phys. Chem. Lett., 2017,8(7):1610-1614.

[44] HUANG H,XUE Q,CHEN B K,et al.. Top-down fabrication of stable methylammonium lead halide perovskite nanocrystals by employing a mixture of ligands as coordinating solvents [J]. Angew. Chem. Int. Ed., 2017,56(32):9571-9576.

[45] TONG Y,BLADT E,AYGLER M F,et al.. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication [J]. Angew. Chem. Int. Ed., 2016,55(44):13887-13892.

[46] HOU S C,GANGISHETTY M K,QUAN Q M,et al.. Efficient blue and white perovskite light-emitting diodes via manganese doping [J]. Joule, 2018,2(11):2421-2433.

[47] YONG Z J,GUO S Q,MA J P,et al.. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield [J]. J. Am. Chem. Soc., 2018,140(31):9942-9951.

[48] BI C H,WANG S X,LI Q,et al.. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission [J]. J. Phys. Chem. Lett., 2019,10(5):943-952.

[49] VAN DER STAM W,GEUCHIES J J,ALTANTZIS T,et al.. Highly emissive divalent-ion-doped colloidal CsPb1-xMxBr3 perovskite nanocrystals through cation exchange [J]. J. Am. Chem. Soc., 2017,139(11):4087-4097.

[50] AHMED G H,EL-DEMELLAWI J K,YIN J,et al.. Giant photoluminescence enhancement in CsPBCl3 perovskite nanocrystals by simultaneous dual-surface passivation [J]. ACS Energy Lett., 2018,3(10):2301-2307.

[51] LIU M,ZHONG G H,YIN Y M,et al.. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight [J]. Adv. Sci., 2017,4(11):1700335-1-8.

[52] AHMED T,SETH S,SAMANTA A. Boosting the photoluminescence of CsPbX3 (X=Cl,Br,I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts [J]. Chem. Mater., 2018,30(11):3633-3637.

[53] AHMED G H,YIN J,BOSE R,et al.. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals [J]. Chem. Mater., 2017,29(10):4393-4400.

[54] ZHANG F,XIAO C T,LI Y F,et al.. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy [J]. Front. Chem., 2018,6,444-1-8.

[55] WU Y,WEI C T,LI X M,et al.. In situ passivation of PbBr4-6 octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield [J]. ACS Energy Lett., 2018,3(9):2030-2037.

[56] DENG W,JIN X C,LV Y,et al.. 2D ruddlesden-popper perovskite nanoplate based deep-blue light-emitting diodes for light communication [J]. Adv. Funct. Mater., 2019,29(40):1903861.

[57] ZHITOMIRSKY D,VOZNYY O,HOOGLAND S,et al.. Measuring charge carrier diffusion in coupled colloidal quantum dot solids [J]. ACS Nano, 2013,7(6):5282-5290.

[58] ZHOU C K,LIN H R,HE Q Q,et al.. Low dimensional metal halide perovskites and hybrids [J]. Mat. Sci. Eng. R Rep., 2019,137:38-65.

[59] WANG Z B,WANG F Z,SUN W D,et al.. Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2018,28(47):1804187-1-10.

[60] WANG Q,REN J,PENG X F,et al.. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites [J]. ACS Appl. Mater. Interfaces, 2017,9(35):29901-29906.

[61] WANG Z B,YUAN F L,SUN W D,et al.. Multifunctional p-type carbon quantum dots:a novel hole injection layer for high-performance perovskite light-emitting diodes with significantly enhanced stability [J]. Adv. Opt. Mater., 2019,7(24):1901299.

[62] CHEN Z M,ZHANG C Y,JIANG X F,et al.. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film [J]. Adv. Mater., 2017,29(8):1603157-1-8.

[63] WANG Z B,WANG F Z,ZHAO B,et al.. Efficient two-dimensional tin halide perovskite light-emitting diodes via a spacer cation substitution strategy [J]. J. Phys. Chem. Lett., 2020,11(3):1120-1127.

[64] WANG K H,PENG Y D,GE J,et al.. Efficient and color-tunable quasi-2D CsPbBrxCl3-x perovskite blue light-emitting diodes [J]. ACS Photonics, 2019,6(3):667-676.

[65] VASHISHTHA P,NG M,SHIVARUDRAIAH S B,et al.. High efficiency blue and green light-emitting diodes using Ruddlesden-Popper inorganic mixed halide perovskites with butylammonium interlayers [J]. Chem. Mater., 2019,31(1):83-89.

[66] NING W H,GAO F. Structural and functional diversity in lead-free halide perovskite materials [J]. Adv. Mater., 2019,31(22):1900326-1-21.

[67] LENG M Y,CHEN Z W,YANG Y,et al.. Lead-free,blue emitting bismuth halide perovskite quantum dots [J]. Angew. Chem. Int. Ed., 2016,55(48):15012-15016.

[68] LENG M Y,YANG Y,CHEN Z W,et al.. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission [J]. Nano Lett., 2018,18(9):6076-6083.

[69] LENG M Y,YANG Y,ZENG K,et al.. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability [J]. Adv. Funct. Mater., 2018,28(1):1704446-1-11.

[70] TAN Z F,LI J H,ZHANG C,et al.. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant:photoluminescence induced by impurity doping [J]. Adv. Funct. Mater., 2018,28(29):1801131-1-10.

[71] JUN T,SIM K,IIMURA S,et al.. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0 D electronic structure [J]. Adv. Mater., 2018,30(43):1804547.

[72] KIM H P,KIM J,KIM B S,et al.. High-efficiency,blue,green,and near-infrared light-emitting diodes based on triple cation perovskite [J]. Adv. Opt. Mater., 2017,5(7):1600920-1-9.

[73] WANG H L,XU Y S,WU J,et al.. Bright and color-stable blue-light-emitting diodes based on three-dimensional perovskite polycrystalline films via morphology and interface engineering [J]. J. Phys. Chem. Lett., 2020,11(4):1411-1418.

[74] YANG F,CHEN H T,ZHANG R,et al.. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals [J]. Adv. Funct. Mater., 2020,30(10):1908760.

[75] PAN G C,BAI X,XU W,et al.. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices [J]. ACS Appl. Mater. Interfaces, 2020,12(12):14195-14202.

[76] ZHENG X P,YUAN S,LIU J K,et al.. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes [J]. ACS Energy Lett., 2020,5(3):793-798.

[77] JIANG Y Z,QIN C C,CUI M H,et al.. Spectra stable blue perovskite light-emitting diodes [J]. Nat. Commun., 2019,10(1):1868.

[78] YUAN F,RAN C X,ZHANG L,et al.. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes [J]. ACS Energy Lett., 2020,5(4):1062-1069.

[79] YANTARA N,JAMALUDIN N F,FEBRIANSYAH B,et al.. Designing the perovskite structural landscape for efficient blue emission [J]. ACS Energy Lett., 2020,5(5):1593-1600.

[80] GONG X W,VOZNYY O,JAIN A,et al.. Electron-phonon interaction in efficient perovskite blue emitters [J]. Nat. Mater., 2018,17(6):550-556.

[81] XING J,ZHAO Y B,ASKERKA M,et al.. Color-stable highly luminescent sky-blue perovskite light-emitting diodes [J]. Nat. Commun., 2018,9(1):3541-1-8.

[82] LEUNG T L,TAM H W,LIU F Z,et al.. Mixed spacer cation stabilization of blue-emitting n=2 Ruddlesden-Popper organic-inorganic halide perovskite films [J]. Adv. Opt. Mater., 2020,8(4):1901679.

[83] LIU Y,CUI J Y,DU K,et al.. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures [J]. Nat. Photonics, 2019,13(11):760-764.

[84] JIN Y,WANG Z K,YUAN S,et al.. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2020,30(6):1908339.

[85] YUAN S,WANG Z K,XIAO L X,et al.. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes [J]. Adv. Mater., 2019,31(44):1904319.

[86] MA D X,TODOROVIC' P,MESHKAT S,et al.. Chloride insertion-immobilization enables bright,narrowband,and stable blue-emitting perovskite diodes [J]. J. Am. Chem. Soc., 2020,142(11):5126-5134.

[87] WANG Q,WANG X M,YANG Z,et al.. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement [J]. Nat. Commun., 2019,10(1):5633.

王志斌, 朱晓东, 贾浩然, 谭占鳌. 蓝光钙钛矿发光二极管: 从材料制备到器件优化[J]. 发光学报, 2020, 41(8): 879. WANG Zhi-bin, ZHU Xiao-dong, JIA Hao-ran, TAN Zhan-ao. Blue Perovskite Light-emitting Diodes: from Material Preparation to Device Optimization[J]. Chinese Journal of Luminescence, 2020, 41(8): 879.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!