红外与激光工程, 2018, 47 (9): 0918001, 网络出版: 2018-10-06   

大口径反射镜水平集拓扑优化设计

Level set topology optimization design of large-aperture mirror
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了设计适用于空间望远镜的具有质量轻、刚度高、高面形精度特点的大尺寸反射镜, 提出了基于水平集方法的反射镜拓扑优化设计方法。首先, 在口径1 m反射镜镜体初始结构模型的基础上建立有限元模型, 基于SIGFIT采用DRESP2建立面形RMS的目标响应函数, 将镜面面形精度直接作为目标函数, 在重量约束条件下, 基于变密度算法与水平集拓扑方法分别进行优化设计, 并基于OSSmooth功能对设计结果分离阈值进行研究。通过对优化模型分离阈值进行分析, 得到最优化的输出结构模型。采用水平集方法的拓扑优化设计方法的中间密度单元格数目远小于变密度方法, 输出结构边界连接性更好。优化模型面形RMS值小于λ/50(λ=632.8 nm), 满足设计指标。
Abstract
In order to design large-aperture mirror with light weight, high rigidity, high accuracy characteristics for the space telescope, a mirror topology optimization method based on the level set method was promoted. Firstly, a finite element model based on the 1-meter aperture mirror body initial structural model was constructed. The surface shape aberration RMS of the mirror was used as the objective function, which was constructed by the DRESP2 technique in Optistruct based on SIGFIT. With the weight constraint, the topology methods based on SIMP and level set method were used to optimize the structure separately during the design process. The separation threshold of the design result was studied based on the OSSmooth function. By analyzing the separation threshold of optimized model, the optimized exported structural model could be achieved. The number of elements with the middle density using the level set topology optimization design method is much smaller than level set method, and the connectivity of the structure is much better. The surface shape RMS value of the optimized model is smaller than λ/50(λ=632.8 nm), which satisfies the technique specification.
参考文献

[1] 吴清文. 空间相机中主镜的轻量化技术及其应用[J]. 光学精密工程, 1997, 5(6): 69-80.

    Wu Qingwen. Light-weight technology and its application of primary mirror in space camera[J]. Optics and Precision Engineering, 1997, 5(6): 69-80. (in Chinese)

[2] 李延伟, 杨洪波, 耿麒先, 等. 大口径主反射镜轻量化结构拓扑优化设计方法[J]. 光学技术, 2008, 34(2): 236-238.

    Li Yanwei, Yang Hongbo, Geng Qixian, et al. Large-aperture lightweight primary mirror design method using topology optimization[J]. Optical Technique, 2008, 34(2):236-238. (in Chinese)

[3] 闫勇, 金光, 杨洪波. 空间反射镜结构轻量化设计[J]. 红外与激光工程, 2008, 37(1): 97-101.

    Yan Yong, Jin Guang, Yang Hongbo. Lightweight structural design of space mirror[J]. Infrared and Laser Engineering, 2008, 37(1): 97-101. (in Chinese)

[4] 沙巍, 陈长征, 张星祥, 等. 空间反射镜轻量化结构的拓扑优化设计[J]. 光电工程, 2009, 36(4): 35-39.

    Sha Wei, Chen Changzheng, Zhang Xingxiang, et al. Topological lightweight design of space mirror[J]. Opto-Electronic Engineering, 2009, 36(4): 35-39. (in Chinese)

[5] 刘磊, 高明辉, 李丽富, 等. 空间相机主反射镜结构拓扑优化设计[J]. 红外与激光工程, 2010, 39(6): 1066-1069.

    Liu Lei, Gao Minghui, Li Lifu, et al. Primary mirror topological optimum design of space camera[J]. Infrared and Laser Engineering, 2010, 39(6): 1066-1069. (in Chinese)

[6] Park K S, Chang S Y, Youn S K. Topology optimization of the primary mirror of a multi-spectral camera[J]. Structural and Multidisciplinary Optimization, 2003, 25(1): 46-53.

[7] Sahu R, Patel V, Singh S K, et al. Structural optimization of a space mirror to selectively constrain optical aberrations[J]. Structural and Multidisciplinary Optimization, 2017, 55(6): 2353-2363.

[8] Park K S, Lee J H, Youn S K. Lightweight mirror design method using topology optimization[J]. Optical Engineering, 2005, 44(5): 053002.

[9] Hu R, Chen W, Li Q, et al. Design optimization method for additive manufacturing of the primary mirror of a large-aperture space telescope[J]. Journal of Aerospace Engineering, 2016, 30(3): 04016093.

[10] Sethian J A, Wiegmann A. Structural boundary design via Level Set and immersed interface methods[J]. Journal of Computational Physics, 2000, 163(2): 489-528.

[11] Park K S, Youn S K. Lightweight design of shell structures using adaptive inner-front Level Set based topology optimization (AIFLS-TOP)[J]. Transactions of the Korean Society of Mechanical Engineers A, 2007, 31(12): 1180-1187.

[12] Doyle K B, Genberg V L, Michels G J. Integrated Optomechanical Analysis[C]//US: SPIE Press, 2012: 81-86.

[13] Genberg V L, Michels G J. Optomechanical analysis of segmented/adaptive optics[C]//Optomechanical Design and Engineering, International Society for Optics and Photonics, 2001, 4444: 90-102.

李诚良, 丁亚林, 刘磊. 大口径反射镜水平集拓扑优化设计[J]. 红外与激光工程, 2018, 47(9): 0918001. Li Chengliang, Ding Yalin, Liu Lei. Level set topology optimization design of large-aperture mirror[J]. Infrared and Laser Engineering, 2018, 47(9): 0918001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!