人工晶体学报, 2020, 49 (4): 592, 网络出版: 2020-06-15   

硼掺杂和氮掺杂金刚石的吸附生长过程研究

Study on the Adsorption Growth Process of B-doped and N-doped Diamonds
作者单位
同济大学机械与能源工程学院,上海 201804
摘要
采用基于密度泛函理论的第一性原理平面波赝势方法,探究了化学气相沉积硼掺杂和氮掺杂金刚石的吸附生长过程:建立了一端为氢终止表面的金刚石基底模型以及单个氮取代或单个硼取代的掺杂金刚石基底模型,并计算这些模型的最优稳定结构;研究了不同碳氢基团(C、CH、CH2、CH3)、硼氢基团(B、BH、BH2)和氮氢基团(N、NH、NH2)在有活性位点的不同基底上的吸附过程和吸附难易程度。对比计算结果表明:硼原子和氮原子能通过原位取代的方式掺杂进入金刚石晶格中,并且带有两个氢的基团(BH2、NH2)是最有利的掺杂基团;氮原子通过取代进入金刚石晶格中后,难以形成氮二聚体,不能大量掺杂,而硼原子较易形成硼二聚体,可以实现大量掺杂。
Abstract
The growth and deposition process of chemical vapor deposition boron-doped and nitrogen-doped diamond were explored by the first-principles plane wave pseudo-potential method based on density functional theory. The diamond substrate model with hydrogen termination surface and single nitrogen-substituted or single boron-substituted were established, and the optimal stable structure of these models was calculated. The adsorption process and the adsorption difficulty of different hydrocarbon groups (C, CH, CH2, and CH3), boron-hydrogen groups (B, BH, and BH2) and nitrogen-hydrogen groups (N, NH, NH2) on different substrates with active site were studied. The results show that boron atoms and nitrogen atoms can be doped into the diamond lattice by in-situ substitution, and the two-hydrogen-bearing groups (BH2, NH2) are the most favorable doping groups. The nitrogen atom is difficult to form a nitrogen dimer after substitution into the diamond crystal lattice, which cannot be heavily doped, but the boron atom is more likely to form a boron dimer, so its heavy doping can be achieved.
参考文献

[1] 封全娇.掺硼CVD金刚石膜的制备工艺及性能研究[D].长春:吉林大学,2013.

[2] 贾宇明,杨邦朝.掺硼金刚石薄膜热敏电阻器性能[J].电子学报,1998,26:122-124.

[3] 王凯悦,朱玉梅,李志宏,等.氮掺杂金刚石{100}晶面的缺陷发光特性[J].物理学报, 2013, 62:097803.1-5.

[4] 林雪玲,潘凤春.氮掺杂的金刚石磁性研究[J].物理学报,2013,62:166102.1-4.

[5] 卢 东.硼和氮掺杂CVD金刚石膜的生长及特性研究[D].长春:吉林大学,2010.

[6] Lu C, Wang Z L, Xu L F. The metallicity of B-doped diamond surface by first-principles study[J].Diamond & Related Materials,2010,19:824-828.

[7] Ashcheulov P, Sebera J, Kovalenko A, et al. Conductivity of boron-doped polycrystalline diamond films:influence of specific boron defects[J].Eur.Phys.J.B,2013,86:443.

[8] Hsieh H H, Chang Y K, Pong W, et al. X-ray-absorption studies of boron-doped diamond films[J].Applied Physics Letters,1999,75:2229-2231.

[9] Ken O, Satoshi K, Ravi P, et al. Low-threshold cold cathodes made of nitrogen-doped chemical-vapor-deposited diamond[J].Nature,1996,381:140-141.

[10] Regemorter V T, Larsson K. A Theoretical study of nitrogen-induced effects on initial steps of diamond CVD growth[J].Chem. Vap. Deposition,2008,14:224-231.

[11] Ekimov E A, Sidorov V A, Bauer E D, et al. Superconductivity in diamond[J].Nature,2004,428:542-545.

[12] 王玉乾,王 兵,甘孔银,等.掺氮对纳米金刚石薄膜形貌及组成结构的影响[J].武汉理工大学学报, 2008, 30:11-14.

[13] 廖克俊,王万录,张振刚,等.热灯丝CVD金刚石膜硼掺杂效应研究[J].物理学报, 1996, 45:1771-1776.

[14] Zou Y M, Larsson K. Effect of boron doping on the CVD growth rate of diamond[J].J.Phys.Chem.C,2016,120:10658-10666.

[15] Li T F, Liu T M, Wei H M, et al. First-principles calculations of the twin boundary energies and adhesion energies of interfaces for cubic face-centered transition-metal nitrides and carbides[J].Applied Surface Science,2015, 355:1132-1135.

[16] 孟凡顺,李久会,赵 星.第一性原理研究Zn偏析对Cu∑5晶界的影响[J].物理学报, 2014, 63:237102.1-8.

[17] An X Z, Liu G Q, Wang F Z, et al. Electronic structure study of growth species adsorption and reaction on cluster models for the diamond surface using LDA method[J].Diamond and Related Materials,2003,12:2169-2174.

[18] Ullah M, Ahmed E, Hussain F, et al. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations[J].Applied Surface Science,2015,334:40-44.

[19] 简小刚,张允华.温度对金刚石涂层膜基界面力学性能的影响[J].物理学报, 2015, 64:046701.1-5.

[20] 简小刚,王俊鹏,何嘉诚.不同反应气氛下氢终止金刚石表面的活化性能[J].人工晶体学报, 2019, 48(3):437-442.

[21] Petrini D, Larsson K. Theoretical study of the thermodynamic and kinetic aspects of terminated (111) diamond surfaces[J].J.Phys.Chem.C,2008,112:3018-3026.

[22] Karlsson J, Larsson K. Kinetic considerations of gas-phase adsorption of growth species on the c-BN(100) surface[J].Thin Solid Films,2014,564:246-252.

[23] 简小刚,甘熠华.碳氢基团在孕镶金刚石表面吸附作用的机理研究[J].人工晶体学报, 2018, 47(4):680-686.

[24] Chen B S, Li Y Z, Guan X Y, et al. First-principles study of structural, elastic and electronic properties of ZrIr alloy[J].Computational Materials Science,2015,105:66-70.

[25] 秦 娜,赵 辉,刘士余.NbB2(0001)表面性质的第一性原理研究[J].人工晶体学报, 2012, 41(1):204-208.

[26] 刘以良,孔凡杰,杨缤维,等.金刚石延(111)面生长的第一性原理研究[J].物理学报, 2007, 56:5413-5417.

[27] 胡盛志,谢兆雄,周朝晖.晶体范德华半径的70年[J].物理化学学报, 2010, 26:1795-1800.

[28] Karlsson J, Larsson K. Hydrogen-induced de/reconstruction of the c-BN(100) surface[J].J. Phys. Chem. C, 2010,114:3516-3521.

[29] 王凯悦,张文晋,张宇飞,等.高温高压氮掺杂金刚石的光致发光研究[J].人工晶体学报, 2018, 47(11):2334-2337.

[30] Regemorter V T, Larsson K. Effect of substitutional N on the diamond CVD growth process:A theoretical approach[J].Diamond & Related Materials,2008,17:1076-1079.

简小刚, 杨培康, 黄新, 胡吉博. 硼掺杂和氮掺杂金刚石的吸附生长过程研究[J]. 人工晶体学报, 2020, 49(4): 592. JIAN Xiaogang, YANG Peikang, HUANG Xin, HU Jibo. Study on the Adsorption Growth Process of B-doped and N-doped Diamonds[J]. Journal of Synthetic Crystals, 2020, 49(4): 592.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!