Photonics Research, 2019, 7 (11): 11000A56, Published Online: Oct. 30, 2019  

Experimental test of error-disturbance uncertainty relation with continuous variables Download: 591次

Author Affiliations
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Copy Citation Text

Yang Liu, Haijun Kang, Dongmei Han, Xiaolong Su, Kunchi Peng. Experimental test of error-disturbance uncertainty relation with continuous variables[J]. Photonics Research, 2019, 7(11): 11000A56.

References

[1] F. Buscemi. All entangled quantum states are nonlocal. Phys. Rev. Lett., 2012, 108: 200401.

[2] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, R. F. Werner. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. Phys. Rev. Lett., 2012, 109: 100502.

[3] C. H. Bennett, S. J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 1992, 69: 2881-2884.

[4] X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, K. Peng. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett., 2002, 88: 047904.

[5] J. Jin, J. Zhang, Y. Yan, F. Zhao, C. Xie, K. Peng. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 2003, 90: 167903.

[6] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 2002, 74: 145-195.

[7] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys., 1927, 43: 172-198.

[8] E. H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys., 1927, 44: 326-352.

[9] WeylH., Gruppentheorie und Quantenmechanik (University of California, 1928).

[10] H. P. Robertson. The uncertainty principle. Phys. Rev., 1929, 34: 163-164.

[11] L. E. Ballentine. The statistical interpretation of quantum mechanics. Rev. Mod. Phys., 1970, 42: 358-381.

[12] M. Ozawa. Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurements. Phys. Rev. A, 2003, 67: 042105.

[13] M. J. W. Hall. Prior information: how to circumvent the standard joint-measurement uncertainty relation. Phys. Rev. A, 2004, 69: 052113.

[14] M. Ozawa. Uncertainty relations for joint measurements of noncommuting observables. Phys. Lett. A, 2004, 320: 367-374.

[15] M. Ozawa. Soundness and completeness of quantum root-mean-square errors. NPJ Quantum Inf., 2019, 5: 1.

[16] C. Branciard. Error-tradeoff and error-disturbance relations for incompatible quantum measurements. Proc. Natl. Acad. Sci. USA, 2013, 110: 6742-6747.

[17] P. Busch, P. Lahti, R. F. Werner. Heisenberg uncertainty for qubit measurements. Phys. Rev. A, 2014, 89: 012129.

[18] P. Busch, P. Lahti, R. F. Werner. Colloquium: quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys., 2014, 86: 1261-1281.

[19] J. Dressel, F. Nori. Certainty in Heisenberg’s uncertainty principle: revisiting definitions for estimation errors and disturbance. Phys. Rev. A, 2014, 89: 022106.

[20] K. Baek, T. Farrow, W. Son. Optimized entropic uncertainty relation for successive measurement. Phys. Rev. A, 2014, 89: 032108.

[21] F. Buscemi, M. J. W. Hall, M. Ozawa, M. M. Wilde. Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett., 2014, 112: 050401.

[22] X. M. Lu, S. Yu, K. Fujikawa, C. H. Oh. Improved error-tradeoff and error-disturbance relations in terms of measurement error components. Phys. Rev. A, 2014, 90: 042113.

[23] A. Barchielli, M. Gregoratti, A. Toigo. Measurement uncertainty relations for position and momentum: relative entropy formulation. Entropy, 2017, 19: 301.

[24] A. Barchielli, M. Gregoratti, A. Toigo. Measurement uncertainty relations for discrete observables: relative entropy formulation. Commun. Math. Phys., 2018, 357: 1253-1304.

[25] J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, Y. Hasegawa. Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin measurements. Nat. Phys., 2012, 8: 185-189.

[26] G. Sulyok, S. Sponar, J. Erhart, G. Badurek, M. Ozawa, Y. Hasegawa. Violation of Heisenberg’s error-disturbance uncertainty relation in neutron-spin measurements. Phys. Rev. A, 2013, 88: 022110.

[27] G. Sulyok, S. Sponar, B. Demirel, F. Buscemi, M. J. W. Hall, M. Ozawa, Y. Hasegawa. Experimental test of entropic noise-disturbance uncertainty relations for spin-1/2 measurements. Phys. Rev. Lett., 2015, 115: 030401.

[28] B. Demirel, S. Sponar, G. Sulyok, M. Ozawa, Y. Hasegawa. Experimental test of residual error-disturbance uncertainty relations for mixed spin-1/2 states. Phys. Rev. Lett., 2016, 117: 140402.

[29] M. Ringbauer, D. N. Biggerstaff, M. A. Broome, A. Fedrizzi, C. Branciard, A. G. White. Experimental joint quantum measurements with minimum uncertainty. Phys. Rev. Lett., 2014, 112: 020401.

[30] F. Kaneda, S. Y. Baek, M. Ozawa, K. Edamatsu. Experimental test of error-disturbance uncertainty relations by weak measurement. Phys. Rev. Lett., 2014, 112: 020402.

[31] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, A. M. Steinberg. Violation of Heisenberg’s measurement-disturbance relationship by weak measurements. Phys. Rev. Lett., 2012, 109: 100404.

[32] A. P. Lund, H. M. Wiseman. Measuring measurement-disturbance relationships with weak values. New J. Phys., 2010, 12: 093011.

[33] S. Y. Baek, F. Kaneda, M. Ozawa, K. Edamatsu. Experimental violation and reformulation of the Heisenberg’s error-disturbance uncertainty relation. Sci. Rep., 2013, 3: 2221.

[34] M. M. Weston, M. J. W. Hall, M. S. Palsson, H. M. Wiseman, G. J. Pryde. Experimental test of universal complementarity relations. Phys. Rev. Lett., 2013, 110: 220402.

[35] W. Ma, Z. Ma, H. Wang, Z. Chen, Y. Liu, F. Kong, Z. Li, X. Peng, M. Shi, F. Shi, S. Fei, J. Du. Experimental test of Heisenberg’s measurement uncertainty relation based on statistical distances. Phys. Rev. Lett., 2016, 116: 160405.

[36] F. Zhou, L. Yan, S. Gong, Z. Ma, J. He, T. Xiong, L. Chen, W. Yang, M. Feng, V. Vedral. Verifying Heisenberg’s error-disturbance relation using a single trapped ion. Sci. Adv., 2016, 2: e1600578.

[37] T. Xiong, L. Yan, Z. Ma, F. Zhou, L. Chen, W. Yang, M. Feng, P. Busch. Optimal joint measurements of complementary observables by a single trapped ion. New J. Phys., 2017, 19: 063032.

[38] Y. Liu, Z. Ma, H. Kang, D. Han, M. Wang, Z. Qin, X. Su, K. Peng. Experimental test of error-tradeoff uncertainty relation using a continuous-variable entangled state. NPJ Quantum Inf., 2019, 5: 68.

[39] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, S. Lloyd. Gaussian quantum information. Rev. Mod. Phys., 2012, 84: 621-669.

[40] X. Su, S. Hao, X. Deng, L. Ma, M. Wang, X. Jia, C. Xie, K. Peng. Gate sequence for continuous variable one-way quantum computation. Nat. Commun., 2013, 4: 2828.

Yang Liu, Haijun Kang, Dongmei Han, Xiaolong Su, Kunchi Peng. Experimental test of error-disturbance uncertainty relation with continuous variables[J]. Photonics Research, 2019, 7(11): 11000A56.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!