中国激光, 2021, 48 (8): 0802003, 网络出版: 2021-03-23  

一维纳米材料位姿调控与激光连接技术进展 下载: 1203次

Progress of Pose Regulation and Laser-Induced Nanojoining Technique of One-dimensional Nanomaterials
作者单位
1 武汉大学工业科学研究院, 湖北 武汉 430072
2 武汉大学动力与机械学院, 湖北 武汉 430072
图 & 表

图 1. 采用光学显微镜辅助的探针系统。(a)采用光学显微镜辅助纳米操作系统的原理图[30];(b)光纤熔融拉伸制备的光纤探针[35];(c)直径为270 ~370 nm的Au纳米线的光学图像[33]

Fig. 1. Probe system assisted using optical microscope. (a) Principle diagram of nano-operating system assisted using optical microscope[30]; (b) fiber probe prepared by melting and stretching fiber[35]; (c)optical microscope of Au nanowire with diameter of 270--370 nm[33]

下载图片 查看原文

图 2. 激光制备纳米接头。(a)(b)利用两根垂直交叉的Ag纳米线制备的“T”型钎焊接头[32];(c)(d)利用两根末端接触的Ag纳米线制备的“V”型纳米接头,比例尺为1 μm[32];(e)Ag纳米线在ZnO纳米线上方垂直交叉,激光辐照后Ag纳米线包裹ZnO纳米线[30];(f)采用功率为30 mW的连续波激光辐照ZnO上方的银纳米线一端,Comsol仿真计算出的Ag和ZnO纳米线的温度分布[30];(g)激光辐照后,ZnO纳米线与Au电极连接后的形貌图[30];(h)ZnO纳米线和Au电极形成连接前后的电学特性[30]

Fig. 2. Nano-joints prepared with laser. (a)(b) Scanning electron microscope (SEM) image of T-shaped brazing joint prepared by using two perpendicularly crossed Ag nanowires[32]; (c)(d) V-shaped nano-joint prepared by using two crossed Ag nanowires with scale of 1 μm[32]; (e) Ag nanowires vertically crossed above ZnO nanowires, and Ag nanowires wrapped ZnO nanowires after laser irradiation [30]; (f) temperature distributions of Ag and ZnO nanowires simulated by COMSOL when 30 mW laser is focused at one end of Ag nanowires above ZnO[30]; (g) morphology of ZnO nanowires connected with Au electrode after laser irradiation[30]; (h) electrical characteristics of ZnO nanowires and Au electrodes before and after forming connection[30]

下载图片 查看原文

图 3. 原子力显微镜辅助的探针系统[37]。(a)AFM探针系统连接碳纳米管的工作流程图;(b)激光在AFM探针针尖激发近场增强效应进而连接两根碳纳米管的原理图;(c)AFM探针的扫描电镜图;碳纳米管(d)连接前和(e)连接后的AFM图

Fig. 3. Probe system assisted by atomic force microscope[37]. (a) Flow chart of AFM probe system connecting carbon nanotubes; (b) principle diagram for nanojoining two carbon nanotubes by using near-field enhancement effect excited at AFM probe tip by laser; (c) SEM image of AFM probe; AFM images (d) before and (e) after nanojoining of carbon nanotubes

下载图片 查看原文

图 4. TEM辅助的探针系统[41]。(a)碳纳米管连接到Pt电极上的形貌图;(b)碳纳米管破裂后的形貌图;(c)破裂后的两根碳纳米管端部接触时的形貌;(d)采用电子束诱导沉积方法制备的碳纳米管-碳纳米管接头;(e)图4(d)中互连后的碳纳米管形貌图;(f)利用探针对碳纳米管施加垂直轴向的压力测试碳纳米管接头性能;(g)图4(f)中碳纳米管弯曲位置的放大图像;(h)移开探针后碳纳米管的形貌图

Fig. 4. Probe system assisted by TEM[41]. (a) Morphology of carbon nanotube connected with Pt electrode; (b) morphology of carbon nanotubes after cracking; (c) morphology of two end-contacted carbon nanotubes after cracking; (d) carbon nanotube-carbon nanotube joint prepared by using electron beam induced deposition method; (e)morphology of carbon nanotube after joint in Fig. 4 (d); (f) carbon nanotube joint performance tested by applying vertical axial pressure to carbon nanotubes with probe; (g) enlarged image of bending position of carbon nanotube in Fig. 4 (f); (h) morphology of carbon nanotube after removing probe

下载图片 查看原文

图 5. 介电电泳法组装的一维纳米材料。(a)原理图[55];(b)采用介电电泳法将碳纳米管装配到Au电极对上[55];(c) 在图案化电极衬底上对纳米线溶液进行介电电泳操作的3D示意图[53];(d)在不同的Vrms和电极几何图式下进行的介电电泳实验的SEM图像[53]

Fig. 5. One-dimensional nanomaterials assembled by dielectrophoresis method. (a) Principle diagram[55]; (b) carbon nanotubes deposited onto Au electrodes by dielectrophoresis method[55]; (c) 3D schematic of dielectrophoresis process during drop-casting of carbon nanotube solution over substrate with pre-patterned electrodes[53]; (d) SEM images of dielectrophoresis experiments carried out with different Vrms and electrode geometries[53]

下载图片 查看原文

图 6. 飞秒激光诱导的自组装。(a)飞秒激光组装并连接Au纳米棒的原理图[56];(b)在强度为130 μJ/cm2的飞秒激光辐照下Au纳米棒的端对端自组装[56];(c)在强度为650 μJ/cm2的飞秒激光辐照下Au纳米棒末端熔化后互连[56];Au纳米棒(d)自组装前和(e)自组装后的TEM图[56];(f)向0.50 mL的Au纳米棒分散液中加2.5 mL异丙醇后,Au纳米棒胶体的消光光谱随时间的变化曲线[57]

Fig. 6. Self-assembly induced by femtosecond laser. (a) Principle diagram of femtosecond laser self-assembly and joining of Au nanorods[56]; (b) end-to-end self-assembly of Au nanorods under 130 μJ/cm2 femtosecond laser irradiation [56]; (c) Au nanorods fused and interconnected under 650 μJ/cm2 femtosecond laser irradiation [56]; TEM images of Au nanorods (d) before and (e) after self-assembly[56]; (f) extinction spectra of Au nanorod colloid versus time after adding 2.5 mL isopropanol to 0.50 mL Au nanorod dispersant[57]

下载图片 查看原文

图 7. 单束光光镊调控纳米材料位姿[61]。(a)光镊将GaN纳米线放置在SnO2纳米线上方,然后采用高强度激光连接GaN和SnO2纳米线;(b)光镊通过操控GaN和SnO2纳米线,搭建出三维纳米结构;(c)光镊将半径为30 nm的GaN纳米线插入到活细胞中

Fig. 7. Pose regulation of nanomaterials by single-beam optical tweezer[61]. (a) GaN nanowires placed on top of SnO2 nanowires by optical tweezer, and then GaN and SnO2 nanowires connected by high intensity laser; (b) GaN and SnO2 nanowires manipulated by optical tweezers to form three-dimensional nanostructure; (c) GaN nanowire with radius of 30 nm inserted into living cells by using optical tweezer

下载图片 查看原文

图 8. 全息光镊调控一维纳米材料位姿[65]。(a)光镊阵列操作CdS纳米线的暗场光学显微镜图;(b)光镊阵列操作CdS纳米线的工作原理图;(c)全息光镊旋转CdS纳米线;(d)全息光镊移动CdS纳米线,并连接两根CdS纳米线,形成T型纳米接头

Fig. 8. Pose regulation of one-dimensional nanomaterials by holographic optical tweezer[65]. (a) Dark-field optical microscopy of CdS nanowires operated by optical tweezer array;(b) principle diagram of CdS nanowires regulated by optical tweezer array; (c) CdS nanowires rotated by holographic optical tweezers; (d) CdS nanowires moved and two CdS nanowires connected by holographic optical tweezers to form T-shaped nano-joint

下载图片 查看原文

图 9. 光镊调控金属纳米线位姿。(a)光镊捕获悬浮在有机溶剂中带有铋纳米球的锗纳米线的原理图[68];(b)图9(a)中的锗纳米线连接后的光学显微镜图[68];(c)采用线偏振激光激发的表面等离激元光镊调控金属纳米线位置和姿态的示意图[70];(d)两根分离的金纳米线的捕获和组装的连续图像[70]

Fig. 9. Optical tweezer based pose regulation of metal nanowires. (a) Principle diagram of optical tweezer based trapping of germanium nanowires with bismuth nanospheres suspended in organic solvent[68]; (b) optical micrograph of joined germanium nanowires in Fig. 9 (a)[68]; (c) schematic of position and pose regulation by linearly polarized laser excited surface plasmonic tweezer[70]; (d) successive images of trapping and assembly of two separated Au nanowires[70]

下载图片 查看原文

万辉, 赵强, 于圣韬, 栾世奕, 桂成群, 周圣军. 一维纳米材料位姿调控与激光连接技术进展[J]. 中国激光, 2021, 48(8): 0802003. Hui Wan, Qiang Zhao, Shengtao Yu, Shiyi Luan, Chengqun Gui, Shengjun Zhou. Progress of Pose Regulation and Laser-Induced Nanojoining Technique of One-dimensional Nanomaterials[J]. Chinese Journal of Lasers, 2021, 48(8): 0802003.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!