万泽洪 1邓鸿洋 1雷宇 2陶国裔 1[ ... ]周圣军 1,2,**
作者单位
摘要
1 武汉大学 工业科学研究院,武汉 430072
2 武汉大学 动力与机械学院,武汉 430072
3 广东科学技术职业学院 汽车工程学院,珠海 519090
采用飞秒激光加工4H-SiC压力敏感膜片,研究了飞秒激光深度方向步进间距、扫描路径方向、单脉冲能量、扫描线间距等参数对4H-SiC烧蚀形貌和烧蚀速率的影响。实验结果表明,飞秒激光加工4H-SiC样品表面孔洞的形成主要与激光诱导微沟槽的重叠有关,激光能量分布更均匀能够有效减少4H-SiC被烧蚀表面的激光诱导微沟槽的数量,增大激光扫描路径与激光偏振方向的夹角能够有效降低激光诱导微沟槽的重叠概率,从而抑制孔洞的形成。采用优化后的飞秒激光加工工艺参数,制备出直径为1 600 μm、厚度为100 μm的4H-SiC压力敏感膜片。所制备的4H-SiC压力敏感膜片表面无明显孔洞,边缘过烧蚀深度小于10 μm,实现了4H-SiC压力敏感膜片的低损伤飞秒激光加工。
微纳加工 压力敏感膜片 飞秒激光烧蚀 碳化硅 表面形貌 Micro-nano machining Pressure sensitive diaphragm Femtosecond laser ablation Silicon carbide Surface morphology 
光子学报
2023, 52(1): 0114004
Author Affiliations
Abstract
Center for Photonics and Semiconductors, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
Solar-blind ultraviolet photodetectors (SBPDs) have attracted tremendous attention in the environmental, industrial, military, and biological fields. Aluminum gallium nitride (AlGaN), a kind of representative III-nitride semiconductor, has promising prospects in solar-blind photodetection owing to its tunable wide bandgap and industrial feasibility. Considering the high defect density in the AlGaN epilayer directly grown on a sapphire substrate, employing an AlN/sapphire template turns out to be an effective method to achieve a high-quality AlGaN epilayer, thereby enhancing the SBPD performances. In recent years, a variety of remarkable breakthroughs have been achieved in the SBPDs. In this paper, the progress on photovoltaic AlGaN-based SBPDs is reviewed. First, the basic physical properties of AlGaN are introduced. Then, fabrication methods and defect annihilation of the AlN/sapphire template are discussed. Various photovoltaic SBPDs are further summarized, including Schottky barrier, metal-semiconductor-metal, p-n/p-i-n and avalanche photodiodes. Furthermore, surface modification and photoelectrochemical cell techniques are introduced. Benefitting from the development of fabrication techniques and optoelectronic devices, photovoltaic AlGaN photodiodes exhibit a promising prospect in solar-blind ultraviolet photodetection.
photovoltaic AlGaN photodiodes solar-blind ultraviolet photodetection AlN/sapphire template 
Chinese Optics Letters
2022, 20(11): 112501
作者单位
摘要
武汉大学 动力与机械学院, 湖北 武汉 430072
开发了一种由溅射AlN层和中温GaN层组成的复合成核层来提高黄光LED的内量子效率。系统地研究了在溅射AlN成核层和复合成核层上生长的InGaN基黄光LED的晶体质量和光学性能, 揭示了复合成核层对黄光LED内量子效率的影响机制。分别采用透射电子显微镜、X射线衍射、拉曼光谱、变温光致发光谱和电致发光谱对黄光LED进行表征分析。结果发现, 复合成核层能够诱导产生堆垛层错, 可以有效降低外延层中的位错密度和残余应力。在溅射AlN成核层和复合成核层上生长的黄光LED外延层中的位错密度分别为5.04×108 cm-2和3.98×108 cm-2, 压应力分别为482.71 MPa和266.38 MPa。通过变温光致发光谱计算得到在溅射AlN成核层和复合成核层上生长的黄光LED的内量子效率(室温295 K)分别为12.5%和29.8%。
黄光发光二极管 成核层 内量子效率 堆垛层错 压电极化 yellow light-emitting diodes nucleation layers internal quantum efficiency stacking faults piezoelectric polarization 
发光学报
2021, 42(12): 1914
作者单位
摘要
1 武汉大学工业科学研究院,湖北 武汉 430072
2 武汉大学动力与机械学院,湖北 武汉 430072
基于4H-SiC材料的微机电系统(MEMS)器件(如压力传感器、微波功率半导体器件等)在制造过程中,需要利用干法刻蚀技术对4H-SiC材料进行微加工。增加刻蚀速率可以提高加工效率,但是调节刻蚀工艺参数在改变4H-SiC材料刻蚀速率的同时,也会对刻蚀表面粗糙度产生影响,进而影响器件的性能。为了提高SiC材料的刻蚀速率并降低刻蚀表面粗糙度,满足4H-SiC MEMS器件研制的需求,本文通过优化光刻工艺参数(曝光模式、曝光时间、显影时间)获得了良好的光刻图形形貌,改善了刻蚀掩模的剥离效果。实验中采用SF6和O2作为刻蚀气体,镍作为刻蚀掩模,分析了4H-SiC反应离子刻蚀工艺参数(刻蚀气体含量、腔体压强、射频功率)对4H-SiC刻蚀速率和表面粗糙度的影响。实验结果表明,通过优化干法刻蚀工艺参数可以获得原子级平整的刻蚀表面。当SF6的流量为330 mL/min,O2流量为30 mL/min,腔体压强为4 Pa,射频功率为300 W时,4H-SiC材料的刻蚀速率可达到292.3 nm/min,表面均方根粗糙度为0.56 nm。采用优化的刻蚀工艺参数可以实现4H-SiC材料的高速率、高表面质量加工。
材料 碳化硅 光刻 反应离子刻蚀 刻蚀速率 表面粗糙度 
激光与光电子学进展
2021, 58(19): 1922002
赵强 1万辉 1于圣韬 2栾世奕 2[ ... ]周圣军 1,2,**
作者单位
摘要
1 武汉大学工业科学研究院, 湖北 武汉 430072
2 武汉大学动力与机械学院, 湖北 武汉 430072
柔性纳米多孔金属材料在柔性传感、柔性储能等领域具有巨大的应用前景。采用脱合金法、等离子体烧结法、热压法制备的纳米多孔金属材料具有较高的弹性模量和屈服强度,不能满足柔性器件的发展需求。为了解决该问题,通过采用高峰值功率的飞秒激光辐照具有良好柔韧性、导电性及抗氧化性银(Ag)纳米线的方法来制备柔性纳米多孔Ag材料。纳米压痕仪测试了柔性纳米多孔Ag材料的力学性能,实验结果表明,柔性纳米多孔Ag材料的力学性能随着飞秒激光辐照功率的增加而增强。此外,X射线衍射仪测试了柔性纳米多孔Ag材料的晶粒尺寸,发现柔性纳米多孔Ag材料的晶粒尺寸随飞秒激光辐照功率的增大而减小。最后,对飞秒激光辐照法、脱合金法、等离子体烧结法、热压法制备的纳米多孔金属材料的屈服强度进行对比分析,当纳米多孔金属材料的晶粒尺寸为50 nm时,飞秒激光辐照制备的柔性纳米金属多孔材料屈服强度最小(0.8 Mpa)。
激光技术 柔性纳米多孔金属材料 飞秒激光 屈服强度 晶粒尺寸 
中国激光
2021, 48(8): 0802009
万辉 1赵强 1于圣韬 2栾世奕 2[ ... ]周圣军 1,2,**
作者单位
摘要
1 武汉大学工业科学研究院, 湖北 武汉 430072
2 武汉大学动力与机械学院, 湖北 武汉 430072
一维纳米材料在微/纳机电系统、柔性透明导电器件、传感器等领域具有广泛的应用。将一维纳米材料装配至指定位置并以特定姿态与纳观或宏观材料形成连接是纳米结构实现功能化、器件化的关键。当前已有多种对一维纳米材料进行位姿调控的方法,根据这些调控方法的原理,将其分为探针法、自组装和光镊法三类,重点介绍了这三种一维纳米材料位姿调控方法的原理与特点。结合一维纳米材料的位姿调控方法与激光连接过程,详细阐述了激光连接一维纳米材料领域的新进展。
激光 激光连接 一维纳米材料 位姿操作 
中国激光
2021, 48(8): 0802003
作者单位
摘要
1 南昌大学 国家硅基LED工程技术研究中心, 江西 南昌 330047
2 武汉大学 动力与机械学院, 湖北 武汉 430072
采用实验与理论模拟相结合的方法, 研究了氮化镓基绿光发光二极管(LED)中V坑对空穴电流分布的影响。首先, 实验获得了V坑面积占比不同的3种样品; 然后, 建立数值模型, 使得理论计算的外量子效率(EQE)及电压与实验测试的变化趋势相匹配, 从而确立了所用数值模型的可信性。计算结果显示: V坑改变了空穴电流的分布, 空穴电流密度在V坑处显著增加, 在平台处明显减小。进一步的分析表明: V坑面积占比在0~10%范围内, V坑空穴电流占比与V坑面积占比之间呈近线性增长(斜率为2.06), 但V坑空穴注入在整个空穴注入的过程中仍未占主导。
V坑 氮化镓 绿光LED 空穴电流分布 V-shaped pits GaN green LED hole current distribution 
发光学报
2018, 39(5): 674
作者单位
摘要
武汉大学 动力与机械学院, 武汉 430072
LED电极结构极大地影响着LED芯片的电流扩展能力, 优化电极结构, 能够缓解电流拥挤现象。讨论了正装LED结构和倒装LED结构的电流分布模型, 并通过SimuLED软件研究了电极结构对LED电流扩展能力的影响。仿真结果表明: 采用插指型电极结构极大提高了正装LED的电流扩展能力, 电极下方插入电流阻挡层(CBL)后改变了芯片的电流分布状况, 有利于光效的提升; 而倒装LED的通孔式双层金属电极结构利用两层金属的互联作用, 使n电极能够在整个芯片范围内均匀分布, 进一步提高了电流扩展性能。
发光二极管 电极结构 电流扩展 通孔式电极 电流分布模型 light emitting diodes electrode structure current spreading via-hole based electrode current distribution models 
半导体光电
2017, 38(4): 483
作者单位
摘要
1 武汉大学 动力与机械学院, 武汉 430072
2 佛山市多谱光电科技有限公司, 广东 佛山 528000
3 华南理工大学 机械与汽车工程学院, 广州 510641
针对LED的产品多样性, 设计了一种可调节夹具以适应各种芯片类型的快速LED光色参数测试系统。为了提高主波长的测量准确性和快速性, 提出了一种分区查表法来通过色坐标计算主波长, 经实验验证, 提出的快速LED光色测试系统可以提高LED测试的效率和精度。
参数 测试 LED LED parameters measurement 
半导体光电
2017, 38(3): 435
作者单位
摘要
武汉大学 动力与机械学院, 湖北 武汉 430072
为了改善蓝光大功率LED芯片p电极处的电流拥挤现象, 提高大功率LED芯片的外量子效率, 在ITO透明导电层与p-GaN间沉积插指型SiO2电流阻挡层。采用等离子体增强化学气相沉积的方法沉积SiO2薄膜, 再经过光刻和BOE湿法刻蚀技术制备插指型SiO2电流阻挡层。采用SimuLED仿真软件分析插指型SiO2电流阻挡层对大功率LED芯片电流扩展性能的影响, 研究插指型SiO2电流阻挡层对大功率LED芯片外量子效率的影响。结果发现, 插指型SiO2电流阻挡层结构可以有效改善p电极附近的电流拥挤现象。与没有沉积插指型SiO2电流阻挡层的大功率LED芯片相比, 光输出功率得到显著的提高。在350 mA的输入电流下, 沉积插指型SiO2电流阻挡层后的大功率LED芯片的外量子效率提高了18.7%。
大功率LED 插指型SiO2电流阻挡层 电流拥挤 外量子效率 high power LED interdigitated SiO2 CBL current crowding external quantum efficiency 
发光学报
2017, 38(6): 786

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!