半导体光电, 2017, 38 (4): 483, 网络出版: 2017-08-30   

LED电极结构优化设计与仿真计算

Optimization Design and Simulation Calculation of LED Electrode Structure
作者单位
武汉大学 动力与机械学院, 武汉 430072
摘要
LED电极结构极大地影响着LED芯片的电流扩展能力, 优化电极结构, 能够缓解电流拥挤现象。讨论了正装LED结构和倒装LED结构的电流分布模型, 并通过SimuLED软件研究了电极结构对LED电流扩展能力的影响。仿真结果表明: 采用插指型电极结构极大提高了正装LED的电流扩展能力, 电极下方插入电流阻挡层(CBL)后改变了芯片的电流分布状况, 有利于光效的提升; 而倒装LED的通孔式双层金属电极结构利用两层金属的互联作用, 使n电极能够在整个芯片范围内均匀分布, 进一步提高了电流扩展性能。
Abstract
The geometric topology of electrodes has been reported to have much impact on the current spreading and subsequent optoelectronic characteristics.And the current crowding phenomenon can be greatly relieved by optimizing the electrode pattern. In this paper, the current distribution models featuring top-emitting LED and flip-chip LED were discussed. The effect of different electrode patterns on the performance of current spreading was further investigated through the simulation with commercial SimuLED software. The simulation results showed that the current spreading capability of the top-emitting LED with fingerlike electrode pattern was greatly increased, which also enhanced the current distribution and luminous efficiency by inserting current blocking layer under the electrode. The current spreading capability of flip-chip LED was enhanced by the via-hole based double layer electrode structure, which enabled the uniform distribution of n-type electrode on the entire chip range.
参考文献

[1] Weisbuch C, Piccardo M, Martinelli L, et al. The efficiency challenge of nitride light-emitting diodes for lighting[J]. Phys. Status Solidi(a), 2015, 212(5): 899-913.

[2] Crawford M H.LEDs for solid-state lighting: performance challenges and recent advances[J]. IEEE J. of Sel. Topics in Quantum Electron., 2009, 15(4): 1028-1040.

[3] Wierer J J, Steigerwald D A, Krames M R, et al. High-power AlGaInN flip-chip light-emitting diodes[J]. Appl. Phys. Lett., 2001, 78(22): 3379-3381.

[4] Huang S, Fan B, Chen Z, et al. Lateral current spreading effect on the efficiency droop in GaN based light-emitting diodes[J]. J. of Display Technol., 2013, 9(4): 266-271.

[5] 张剑铭, 邹德恕, 徐晨, 等. 电极结构优化对大功率GaN基发光二极管性能的影响[J]. 物理学报, 2007, 56(10): 6003-6007.

    Zhang Jianming, Zou Deshu, Xu Chen, et al. Effects of optimized contact scheme on the performance of high-power GaN-based light-emitting diodes[J]. Act. Phys. Sin., 2007, 56(10): 6003-6007.

[6] Horng R H, Chuang S H, Tien C H, et al. High performance GaN-based flip-chip LEDs with different electrode patterns[J]. Opt. Express, 2014, 22(103): A941-A946.

[7] Zhou S, Wang S, Liu S, et al. High power GaN-based LEDs with low optical loss electrode structure[J]. Opt. & Laser Technol., 2013, 54(26): 321-325.

[8] Cai Y, Zou X, Chong W C, et al. Optimization of electrode structure for flip-chip HVLED via two-level metallization[J]. Phys. Status Solidi, 2016, 213(5): 1199-1203.

[9] Kim H, Lee S N. Theoretical considerations on current spreading in GaN-based light emitting diodes fabricated with top-emission geometry[J]. J. of The Electrochem. Society, 2010, 157(5): H562-H564.

[10] Guo X, Li Y L, Schubert E F. Efficiency of GaN/InGaN light-emitting diodes with interdigitated mesa geometry[J]. Appl. Phys. Lett., 2001, 79(13): 1936-1938.

[11] Zhou S, Yuan S, Liu S, et al. Improved light output power of LEDs with embedded air voids structure and SiO2 current blocking layer[J]. Appl. Surface Science, 2014, 305(3): 252-258.

[12] Guo X, Schubert E F. Current crowding in GaN/InGaN light emitting diodes on insulating substrates[J]. J. of Appl. Phys., 2001, 90(8): 4191-4195.

[13] Kim H, Cho J, Lee J W, et al. Measurements of current spreading length and design of GaN-based light emitting diodes[J]. Appl. Phys. Lett., 2007, 90(6): 063510-063510-3.

[14] Lv J J, Zheng C J, Chen Q, et al. High power InGaN/GaN flip-chip LEDs with via-hole-based two-level metallization electrodes[J]. Phys. Status Solidi, 2016, 213(12).

吕家将, 郑晨居, 周圣军, 刘胜. LED电极结构优化设计与仿真计算[J]. 半导体光电, 2017, 38(4): 483. LV Jiajiang, ZHENG Chenju, ZHOU Shengjun, LIU Sheng. Optimization Design and Simulation Calculation of LED Electrode Structure[J]. Semiconductor Optoelectronics, 2017, 38(4): 483.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!