中国激光, 2013, 40 (8): 0806003, 网络出版: 2013-07-09   

溶胶凝胶法制备的掺铥石英玻璃光谱性质及光纤激光性能

Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology
作者单位
1 中国科学院上海光学精密机械研究所, 上海 201800
2 中国科学院大学, 北京 100049
摘要
用溶胶凝胶法制备了摩尔百分比为0.3Tm2O3-0.3xAl2O3- (100-0.3-0.3x)SiO2 (x=8, 10, 15, 20)的一系列铥掺杂石英(ATS)玻璃。研究了样品的光谱性质,1811nm处最大发射截面为6.39×10-21 cm2,最长荧光寿命为645 μs。样品的最低OH含量为10.5×10-6。采用管棒法制备了光纤预制棒,采用组分为0.3Tm2O3-4.5Al2O3-95.2SiO2的玻璃作为纤芯,八边形的纯石英管作为内包层,用紫外固化剂作为外包层拉制双包层光纤。测量了光纤的激光性质,在66 cm长的光纤中得到了最大为1.23 W的激光输出,斜率效率为11.7%,激光阈值为6.07W,激光中心波长为1952 nm。
Abstract
Tm3+-doped silica glasses with molar fraction composition of 0.3Tm2O3-0.3xAl2O3-(100-0.3-0.3x)SiO2 (x=8, 10, 15, 20) denoted as ATS glasses are prepared by sol-gel method. The spectroscopic properties of the bulk glasses are investigated. The maximum emission cross section and measured fluorescence lifetime at 1811 nm are 6.39×10-21 cm2 and 645 μs, respectively. The lowest OH content is 10.5×10-6. The fiber preform was prepared by rod-in-tube method. The glass with composition 0.3Tm2O3-4.5Al2O3-95.2SiO2 is used as fiber core; the inner cladding is pure silica glass with an octagonal shape; and the outer cladding is ultraviolet curing layer. Laser properties of the fiber are investigated. The maximum laser output power reaches 1.23 W from a 66-cm-long fiber and the slope efficiency is 11.7%. The lasing threshold is 6.07 W and the lasing wavelength is centered at 1952 nm.
参考文献

[1] D Y Shen, J K Sahu, W A Clarkson. High-power widely tunable Tm∶fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm [J]. Opt Express, 2006, 14(13): 6084-6090.

[2] W A Clarkson, N P Barnes, P W Turner, et al.. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm [J]. Opt Lett, 2002, 27(22): 1989-1991.

[3] Z S Sacks, Z Schiffer, D David. Long wavelength operation of double-clad Tm∶silica fiber lasers[C]. SPIE, 2007, 6453: 645320.

[4] B M Walsh. Review of Tm and Ho materials: spectroscopy and lasers[J]. Laser Phys, 2009,19(4): 855-866.

[5] M Richardson, L Shah, R A Sims, et al.. High power thulium fiber lasers[C]. SPPCom, 2011. SOWD1.

[6] T F Morse, K Oh, L J Reinhart. Carbon dioxide detection using a co-doped Tm-Ho optical fiber[C]. SPIE, 1995, 2510: 158-164.

[7] K Li, G Zhang, L Hu. Watt-level ~2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber[J]. Opt Lett, 2010, 35(24): 4136-4138.

[8] J Wu, Z Yao, J Zong, et al.. Highly efficient high-power thulium-doped germanate glass fiber laser[J]. Opt Lett, 2007, 32(6): 638-640.

[9] B M Walsh, N P Barnes. Comparison of Tm∶ZBLAN and Tm∶silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm[J]. Appl Phys B, 2004, 78(3-4): 325-333.

[10] G Frith, D G Lancaster, S D Jackson. 85 W Tm3+-doped silica fibre laser[J]. Electron Lett, 2005, 41(12): 687-688.

[11] H Lin, X Wang, L Lin, et al.. Near-infrared emission character of Tm3+-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser[J]. J Phys D: Appl Phys, 2007, 40(12): 3567-3572.

[12] T Yamamoto, Y Miyajima, T Komukai. 1.9 μm Tm-doped silica fibre laser pumped at 1.57 μm[J]. Electron Lett, 1994, 30(3): 220-221.

[13] P F Moulton, G A Rines, E V Slobodtchikov, et al.. Tm-doped fiber lasers: fundamentals and power scaling [J]. IEEE J Sel Top Quantum Electron, 2009, 15(1): 85-92.

[14] S D Jackson, S Mossman. Efficiency dependence on the Tm3+ and Al3+ concentrations for Tm3+-doped silica double-clad fiber lasers[J]. Appl Opt, 2003, 42(15): 2702-2707.

[15] S D Jackson. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers[J]. Opt Commun, 2004, 230(1-3): 197-203.

[16] 王文涛,阮灵, 宁鼎, 等. 掺铥石英光纤的掺杂浓度实验研究[J]. 光通信技术, 2000, (4): 273-276.

    Wang Wentao, Ruan Ling, Ning Ding, et al.. Researches on dopant concentration of a thulium-doped silica fiber[J]. Optical Communication Technology, 2000, (4): 273-276.

[17] S Tammela, M Soderfund, J Koponen, et al.. The potential of direct nanoparticle deposition for the next generation of optical fibers[C]. SPIE, 2006, 6116: 611616.

[18] M C Ferrara, C Blasi. Sol-gel synthesis and characterisation of erbium-modified silica glasses[J]. Mater Lett, 2004, 58(9): 1490-1493.

[19] Alain Pastouret, Ekaterina Burov, David Boivin, et al.. Amplifying Optical Fiber and Method of Manufacturing[P]. U S Patent, 20100118388, 2010-5-13.

[20] A Biswas, J Sahu, H N Acharya. Sol-gel synthesis of Pr-doped silica glasses[J]. Mater Sci Eng B, 1996, 41(3): 329-332.

[21] S Liu, H Li, Y Tang, et al.. Fabrication and spectroscopic properties of Yb3+-doped silica glasses using the sol-gel method[J]. Chin Opt Lett, 2012, 10(8): 081601

[22] F Artizzu, F Quochi, M Saba, et al.. Silica sol-gel glasses incorporating dual-luminescent Yb quinolinolato complex: processing, emission and photosensitising properties of the ‘antenna’ ligand [J]. Dalton Transactions, 2012, 41(42): 13147-13153.

[23] A J Silversmith, N T T Nguyen, D L Campbell, et al.. Fluorescence yield in rare-earth-doped sol-gel silicate glasses[J]. J Lumin, 2009, 129(12): 1501-1504.

[24] 孙国忠,赵泉林,刘海涛, 等. 溶胶-凝胶法制备SiO2玻璃[J]. 化工时刊, 1999, (4): 20-22.

    Sun Guozhong, Zhao Quanlin, Liu Haitao, et al.. Silica glass prepared by sol-gel method[J]. Chemical Industry Times, 1999, (4): 20-22.

[25] G X Chen, Q Y Zhang, G F Yang, et al.. Mid-infrared emission characteristic and energy transfer of Ho3+-doped tellurite glass sensitized by Tm3+ [J]. J Fluorescence, 2007, 17(3): 301-307.

[26] B Judd. Optical absorption intensities of rare-earth ions[J]. Phys Rev, 1962, 127(3): 750-761.

[27] G S Ofelt. Intensities of crystal spectra of rare-earth ions[J]. J Chem Phys, 1962, 37(3): 511-520.

[28] J Heo, Y B Shin, J N Jang. Spectroscopic analysis of Tm3+ in PbO-Bi2O3-Ga2O3 glass[J]. Appl Opt, 1995, 34(21): 4284-4289.

[29] H Fan, G Gao, G Wang, et al.. Tm3+ doped Bi2O3-GeO2-Na2O glasses for 1.8 μm fluorescence[J]. Opt Mater, 2010, 32 (5): 5627-631.

[30] 李科峰,汪国年,胡丽丽, 等. WO3含量对Tm3+掺杂TeO2-WO3-La2O3玻璃热学性能及光谱性质的影响[J]. 无机材料学报, 2010, 25(4): 429-434.

    Li Kefeng, Wang Guonian, Hu Lili, et al.. Effects of WO3 contents on the thermal and spectroscopic properties of Tm3+-doped TeO2-WO3-La2O3 glasses[J]. J Inorganic Materials, 2010, 25(4): 429-434.

[31] D M Shi, Q Y Zhang, G F Yang, et al.. Spectroscopic properties and energy transfer in Ga2O3-Bi2O3-PbO-GeO2 glasses codoped with Tm3+ and Ho3+[J]. J Non-Cryst Solids, 2007, 353(16-17): 1508-1514.

[32] S A Payne, L L Chase, L K Smith, et al.. Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+[J]. IEEE J Quantum Electron, 1992, 28(11): 2619-2630.

[33] B Zhou, E Y-B Pun, H Lin, et al.. Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses[J]. J Appl Phys, 2009, 106(10): 103105.

[34] S D Jackson,T A King. Theoretical modeling of Tm-doped silica fiber lasers[J]. J Lightwave Technol, 1999, 17(5): 948-956.

[35] X Zou, H Toratani. Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses[J]. J Non-Cryst Solids, 1996,195(1-2): 113-124.

[36] D Zhuo, G Qi, B Peng. Determination of water content in phosphate laser glass[J]. Chin Phys Lasers, 1986, 13(3): 212-215.

[37] 王德平,黄文海,周志豪. 钠钙硅玻璃中的羟基含量对其性能的影响[J]. 建筑材料学报, 1998, 1(4): 375-378.

    Wang Deping, Huang Wenhai, Zhou Zhihao. Effect of hydroxyl concentration on the properties of commercial soda lime silica glasses[J]. J Building Materials, 1998, 1(4): 375-378.

[38] J Kirchhof, S Unger, A Schwuchow, et al.. The influence of Yb2+ ions on optical properties and power stability of ytterbium doped laser fibers[C]. SPIE, 2010, 7598: 759801

李志兰, 王世凯, 王欣, 关珮雯, 李文涛, 王孟, 于春雷, 张磊, 李科峰, 陈丹平, 胡丽丽. 溶胶凝胶法制备的掺铥石英玻璃光谱性质及光纤激光性能[J]. 中国激光, 2013, 40(8): 0806003. Li Zhilan, Wang Shikai, Wang Xin, Guan Peiwen, Li Wentao, Wang Meng, Yu Chunlei, Zhang Lei, Li Kefeng, Chen Danping, Hu Lili. Spectral Properties of Tm3+-Doped Silica Glasses and Laser Behaviors of Fibers by Sol-Gel Technology[J]. Chinese Journal of Lasers, 2013, 40(8): 0806003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!