应用光学, 2016, 37 (1): 80, 网络出版: 2016-03-22   

Φ2 m平面反射镜低频轮廓非接触测量设备研制进展

Development progress of instrument for low-frequency non-contact profile measurement of Φ2 m flat reflector
作者单位
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
口径2 m的高质量平面反射镜可用于大口径光电设备像质评价和性能检测, 但受使用环境影响, 平面反射镜的面形精度不易长期保持稳定, 因此需要在使用前对其面形精度进行现场、快速校验, 而常规的全口径或子孔径干涉检测均难以满足上述需求。由于反射镜面形在制造过程引入的中高频误差已处于稳定状态, 环境扰动只引入低频像差, 而选择子孔径斜率扫描再重构波面低频轮廓的方法较适于面形精度现场校验。提出双五棱镜配合双测角仪进行子孔径斜率同步差分测量的方法, 可改善长测量周期内环境扰动引起的随机误差。并对测量设备光学、机械及控制系统进行设计, 提出采用2台S-H传感器代替传统测角仪用于子孔径斜率测量的解决方法。验证试验结果表明, 波面重构算法以及仪器测角精度可满足面形测量精度需求, 其与ZYGO干涉仪测量结果的互差小于20 nm(RMS)。
Abstract
The high-quality flat reflector with 2 m aperture can be used for image quality evaluation and performance testing of large-aperture optical instruments. However, by the impact of usage environment, the surface accuracy of large flat reflector cannot maintain long-term stability. Therefore, the surface quality needs to fast calibration on site before using. But the conventional full-caliber or sub-aperture interferometry measurement methods are difficult to meet these needs. Due to the high frequency error of mirror introduced in the manufacturing process being in a steady state, the environmental perturbations introduce only low frequency aberrations. And the selected reconstructed wave-front profile followed with sub-aperture slope scanning is more suitable for surface quality calibration on site of large flat reflector. A double-pentaprism with dual-goniometer synchronize differential measurement method was proposed, which could reduce the random error caused by environmental disturbances in long measurement cycle. Moreover, the optical, mechanical and control system of measurement instrument was designed. And two S-H sensors were proposed to use to instead of traditional goniometer for sub-apertures slope measurement. Currently validation tests show that the wave-front reconstruction algorithms and instrument angular accuracy meet the demand of accuracy for surface quality, the mutual difference is less than 20 nm (root-mean-square, RMS) with the test result of ZYGO interferometric measurement.
参考文献

[1] Hidehiro K, Masataka N. Experimental and numerical study of stitching interferometry for the optical testing of the SPICA telescope [J]. Space Telescopes and Instrumentation, Proc. of SPIE, 2012, 8442: 84423T-1.

[2] Jeff K, Mark B, Jay C, et al. Improved cryogenic testing capability at marshall space flight center’s X-ray cryogenic facility [J]. Space Telescopes and Instrumentation, Proc. of SPIE, 2006, 6265: 62654E.

[3] 朱硕, 张晓辉. 高精度瑞奇-康芒检测法研究及测试距离精度影响分析[J].光学学报, 2014, 34(1): 0112001-1~0112001-8.

    Zhu Shuo, Zhang Xiaohui. Study on high precision Ritchey-Common test and analysis of test distance influence [J]. Acta Optica Sinica, 2014, 34(1): 0112001-1~0112001-8.

[4] 侯溪, 伍凡, 杨力, 等.子孔径拼接干涉测试技术现状及发展趋势[J]. 光学与光电技术, 2005, 3(3): 50-53.

    Hou Xi, Wu Fan, Yang Li, et al. Status and development trend of sub-aperture stitching interferometric testing technique [J]. Optical & Optoelectronic Technology, 2005, 3(3): 50-53.

[5] Su Peng, Burge J H. Parks robert E application of maximum likelihood reconstruction of subaperture data for measurement of large flat mirrors[J]. Applied Optics, 2010, 49(1): 21-31.

[6] Tony L W, Thomas R S. Optimizing the cryogenic test configuration for the James webb space telescope [J]. SPIE, 2006, 6271: 62710B.

[7] Chen Shanyong, Li Shengyi, Wang Guilin. Subaperture test of wavefront error of large telescopes: Error sources and stitching performance simulations [J]. Intl. Symposium on Optoelectronic Technology and Application, Proc. of SPIE, 2014, 9298: 929817-1.

[8] Steven C W, Samuel H B, James H B, et al. Wavefront control of the large optics test and integration site (LOTIS) 6: 5 m collimator [J]. Applied Optics, 2010, 49(18): 3522-3537.

[9] 马冬梅, 韩昌元. 基于五棱镜扫描技术测试大口径平面镜的系统设计[J].电子测量技术, 2007, 30(11): 90-95.

    Ma Dongmei, Han Changyuan. System design of large flat mirror measurement based on pentagon prism scanning technique [J]. Electronic Measurement Technology, 2007, 30(11): 90-95.

[10] 程子清, 耿安兵, 杨长城. 轮廓仪检测的系统误差分析[J]. 光学与光电技术, 2005, 3(2): 41-44.

    Cheng Ziqing, Geng Anbing, Yang Changcheng. Analysis on system error of profilometer testing[J]. Optical & Optoelectronic Technology, 2005, 3(2): 41-44.

[11] 常山, 曹益平, 陈永权. 五棱镜的运动误差对波前测量的影响[J]. 光学仪器, 2005, 27(3): 12-16.

    Chang Shan, Cao Yiping, Chen Yongquan. Kinematic error effect of pentagonal prism on wavefront measurement [J]. Optical Instruments, 2005, 27(3): 12-16.

[12] 马冬梅, 孙军月, 张波, 等. 高精度大口径平面镜面形角差法测试探究[J]. 光学精密工程, 2005, 13(11): 121-126.

    Ma Dongmei, Sun Junyue, Zhang Bo, et al. High precision large flat mirror measurement by angle difference testing [J]. Optics and Precision Engineering, 2005, 13(11): 121-126.

[13] 马冬梅, 刘志祥, 马磊, 等. 五角棱镜扫描系统中调整误差及制造角差的影响分析[J]. 光学精密工程, 2008, 16(12): 2517-2523.

    Ma Dongmei, Liu Zhixiang, Ma Lei, et al. Influences of alignment error in pentaprism scanning system and fabrication angle error on measuring accuracy of optical surface [J]. Optics and Precision Engineering, 2008, 16(12): 2517-2523.

何煦. Φ2 m平面反射镜低频轮廓非接触测量设备研制进展[J]. 应用光学, 2016, 37(1): 80. He Xu. Development progress of instrument for low-frequency non-contact profile measurement of Φ2 m flat reflector[J]. Journal of Applied Optics, 2016, 37(1): 80.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!