激光与光电子学进展, 2019, 56 (5): 051402, 网络出版: 2019-07-31   

激光熔覆304不锈钢稀释效应的数值模拟与实验 下载: 1167次

Numerical Simulation and Experiment of Dilution Effect in Laser Cladding 304 Stainless Steel
作者单位
西安科技大学机械工程学院, 陕西 西安 710054
引用该论文

郭卫, 李凯凯, 柴蓉霞, 张丽苹. 激光熔覆304不锈钢稀释效应的数值模拟与实验[J]. 激光与光电子学进展, 2019, 56(5): 051402.

Wei Guo, Kaikai Li, Rongxia Chai, Liping Zhang. Numerical Simulation and Experiment of Dilution Effect in Laser Cladding 304 Stainless Steel[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051402.

参考文献

[1] 卢秉恒, 李涤尘. 3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.

    Lu B H, Li D C. Development of the additive manufacturing (3D printing) technology[J]. Machine Building & Automation, 2013, 42(4): 1-4.

[2] 方琴琴, 傅戈雁, 王聪, 等. 带连接筋双层薄壁件激光直接成形工艺[J]. 中国激光, 2017, 44(2): 0202005.

    Fang Q Q, Fu G Y, Wang C, et al. Laser direct forming technology of double thin-walled parts with connecting ribs[J]. Chinese Journal of Lasers, 2017, 44(2): 0202005.

[3] 何博文, 冉先喆, 田象军, 等. 激光增材制造TC11钛合金的耐蚀性研究[J]. 中国激光, 2016, 43(4): 0403004.

    He B W, Ran X Z, Tian X J, et al. Corrosion resistance research of laser additive manufactured TC11 titanium alloy[J]. Chinese Journal of Lasers, 2016, 43(4): 0403004.

[4] 王志会, 王华明, 刘栋. 激光增材制造AF1410超高强度钢组织与力学性能研究[J]. 中国激光, 2016, 43(4): 0403001.

    Wang Z H, Wang H M, Liu D. Microstructure and mechanical properties of AF1410 ultra-high strength steel using laser additive manufacture technique[J]. Chinese Journal of Lasers, 2016, 43(4): 0403001.

[5] Ding L, Li M X, Zhu X C, et al. Numerical analysis of temperature field of co-based alloy coatings by laser cladding on the mild steel[J]. Applied Mechanics and Materials, 2013, 364: 603-608.

[6] 韩会, 祁文军, 党元晓, 等. 路径设置对304不锈钢激光熔覆温度场及应力应变场的影响[J]. 热加工工艺, 2017( 12): 148- 152.

    HanH, Qi WJ, Dang YX, et al. Effect of path set on laser cladding temperature field and stress and strain field of 304 stainless steel[J]. Hot Working Technology, 2017( 12): 148- 152.

[7] Hao M Z, Sun Y W. A FEM model for simulating temperature field in coaxial laser cladding of TI6AL4V alloy using an inverse modeling approach[J]. International Journal of Heat and Mass Transfer, 2013, 64: 352-360.

[8] 郑丽娟, 李燕, 何大川, 等. 激光多道熔覆温度场及熔覆层组织分析[J]. 红外与激光工程, 2013, 42(S1): 52-57.

    Zheng L J, Li Y, He D C, et al. Analysis on temperature field of multi-path laser claded and microstructure of coatings layer[J]. Infrared and Laser Engineering, 2013, 42(S1): 52-57.

[9] 宫新勇, 高士友, 咸士玉, 等. 基于温度特征的单道激光熔覆翘曲变形[J]. 激光与光电子学进展, 2017, 54(10): 101410.

    Gong X Y, Gao S Y, Xian S Y, et al. Warp deformation in single-track laser cladding based on temperature characteristics[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101410.

[10] 华亮, 田威, 廖文和, 等. 激光熔覆热影响区及残余应力分布特性研究[J]. 激光与光电子学进展, 2014, 51(9): 091401.

    Hua L, Tian W, Liao W H, et al. Study of thermal-mechanical coupling behavior in laser cladding[J]. Laser & Optoelectronics Progress, 2014, 51(9): 091401.

[11] 周野飞, 高士友, 王京京. 激光熔覆高碳铁基合金组织性能研究[J]. 中国激光, 2013, 40(12): 1203001.

    Zhou Y F, Gao S Y, Wang J J. Microstructure-property of laser cladding high carbon Fe-based alloy[J]. Chinese Journal of Lasers, 2013, 40(12): 1203001.

[12] 鲍雨梅, 高海明, 张冬明, 等. 基于温度场模拟的激光熔覆生物陶瓷涂层工艺参数选择[J]. 激光与光电子学进展, 2014, 51(11): 111601.

    Bao Y M, Gao H M, Zhang D M, et al. Laser cladding bio-ceramic coating process parameters selection based on simulation of temperature field[J]. Laser & Optoelectronics Progress, 2014, 51(11): 111601.

[13] Lin C M. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade[J]. Vacuum, 2015, 115: 117-123.

[14] Wu D J, Guo M H, Ma G Y, et al. Dilution characteristics of ultrasonic assisted laser clad yttria-stabilized zirconia coating[J]. Materials Letters, 2015, 141: 207-209.

[15] Gan Y, Wang W X, Cui Z Q, et al. Numerical and experimental study of the temperature field evolution of Mg alloy during high power diode laser surface melting[J]. Optik, 2015, 126(7/8): 739-743.

[16] Parekh R, Buddu R K, Patel R I. Multiphysics simulation of laser cladding process to study the effect of process parameters on clad geometry[J]. Procedia Technology, 2016, 23: 529-536.

[17] 李豪, 王彦芳, 石志强, 等. 基于椭圆热源模型的激光熔覆温度场与流场数值模拟[J]. 应用激光, 2017, 37(2): 218-222.

    Li H, Wang Y F, Shi Z Q, et al. Simulation of laser cladding temperature field and flow field based on ellipse heat source model[J]. Applied Laser, 2017, 37(2): 218-222.

[18] Yong Y W, Fu W, Deng Q L, et al. A comparative study of vision detection and numerical simulation for laser cladding of nickel-based alloy[J]. Journal of Manufacturing Processes, 2017, 28: 364-372.

[19] Li R F, Li Z G, Huang J, et al. Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process[J]. Applied Surface Science, 2012, 258(20): 7956-7961.

郭卫, 李凯凯, 柴蓉霞, 张丽苹. 激光熔覆304不锈钢稀释效应的数值模拟与实验[J]. 激光与光电子学进展, 2019, 56(5): 051402. Wei Guo, Kaikai Li, Rongxia Chai, Liping Zhang. Numerical Simulation and Experiment of Dilution Effect in Laser Cladding 304 Stainless Steel[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051402.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!