光电工程, 2019, 46 (3): 1, 网络出版: 2019-04-07  

应用于高密度存储的偏光全息技术研究进展

Review on polarization holography for high density storage
作者单位
1 北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京 100081
2 福建师范大学光电与信息工程学院,信息光子学研究中心,福建 福州 350117
摘要
偏光全息术通过记录两束偏振光干涉形成的偏振光栅,可以把偏振光信息存储在偏振敏感材料当中。偏光全息把传统全息术中长期被忽视的光波偏振信息加以利用,在加大了存储容量的同时,也具有了许多独特的性质。本文简要介绍了偏光全息的发展历程,描述了基于张量的偏光全息理论及其一些推论,然后对偏光全息在数据存储领域的应用作了介绍,并做出展望。
Abstract
By recording the polarization grating formed by the interference of two polarized lights, polarization holography can store the information in polarization sensitive materials. In contrast to traditional holography, polarization holography owns many unique properties, for instance, utilizing the long-neglected polarization information and increasing storage capacity. This paper first briefly introduced the development of polarization holography, the tensor-based holographic theory and some of its inferences. Then the further applications of polarization holography in high density data storage are briefly overviewed.
参考文献

[1] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777–778.

[2] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 1962, 52(10): 1123–1130.

[3] Denisyuk Y N. Photographic reconstruction of the optical properties of an object in its own scattered radiation field[J]. Soviet Physics Doklady, 1962, 7: 543–545.

[4] Van der Lugt A, Rotz F B, Klooster Jr A. Character-reading by optical spatial filtering[M]//Tippett I C. Optical and Electro-Optical Information Processing. Cambridge, Massachusetts: Massachusetts Institute of Technology Press, 1965: 125–135.

[5] Benton S A. Hologram reconstructions with extended incoherent sources[J]. Journal of the Optical Society of America, 1969, 59(10): 1545A.

[6] White J G, Amos W B. Confocal microscopy comes of age[J]. Nature, 1987, 328(6126): 183–184.

[7] Son J Y, Javidi B, Kwack K D. Methods for displaying three-dimensional images[J]. Proceedings of the IEEE, 2006, 94(3): 502–523.

[8] Ostrovsky Y I, Butusov M M, Ostrovskaya G V. Interferometry by Holography[M]. Berlin: Springer, 1980: 184–191.

[9] 虞祖良, 金国藩. 计算机制全息图[M]. 北京: 清华大学出版社, 1984: 12–30, 48–50.

    Yu Z L, Jin G F. Computer-generated Hologram[M]. Beijing: Tsinghua University Press, 1984: 12–30, 48–50.

[10] Dhar L, Curtis K, F cke T. Holographic data storage: coming of age[J]. Nature Photonics, 2008, 2(7): 403–405.

[11] Curtis K, Dhar L, Hill A, et al. Holographic Data Storage[M]. Hoboken, NJ: John Wiley & Sons Ltd, 2010: 1–14.

[12] Coufal H J, Psaltis D, Sincerbox G T. Holographic Data Storage[M]. Berlin: Springer-Verlag, 2000: 1–17.

[13] Heanue J F, Bashaw M C, Daiber A J, et al. Digital holographic storage system incorporating thermal fixing in lithium niobate[J]. Optics Letters, 1996, 21(19): 1615–1617.

[14] Van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 1963, 2(4): 393–400.

[15] Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749–752.

[16] 陶世荃. 高密度光学全息存储技术的新进展——向光盘存储挑战[J]. 物理, 1997, 26(2): 79–85.

    Tao S Q. Recent advances in dense holographic storage[J]. Physics, 1997, 26(2): 79–85.

[17] 谭小地. 大数据时代的光存储技术[J]. 红外与激光工程, 2016, 45(9): 19–22.

    Tan X D. Optical data storage technologies for big data era[J]. Infrared and Laser Engineering, 2016, 45(9): 19–22.

[18] Kdnuggets. IDC study: digital universe in 2020[EB/OL]. (2012-12-15). [2018-11-1]. https://www.kdnuggets.com/ 2012/12/idc-digital-universe-2020.html.

[19] Tan X D, Lin X, Wu A A, et al. High density collinear holographic data storage system[J]. Frontiers of Optoelectronics, 2014, 7(4): 443–449.

[20] Lohmann A W. Reconstruction of vectorial wavefronts[J]. Applied Optics, 1965, 4(12): 1667–1668.

[21] Fourney M E, Waggoner A P, Mate K V. Recording polarization effects via holography[J]. Journal of the Optical Society of America, 1968, 58(5): 701–702.

[22] Kakichashvili S D. Method for phase polarization recording of holograms[J]. Soviet Journal of Quantum Electronics, 1974, 4(6): 795–798.

[23] Nikolova L, Ramanujam P S. Polarization Holography[M]. Cambridge: Cambridge University Press, 2009: 25–85.

[24] Kuroda K, Matsuhashi Y, Fujimura R, et al. Theory of polarization holography[J]. Optical Review, 2011, 18(5): 374.

[25] Zang J L, Wu A A, Liu Y, et al. Characteristics of volume polarization holography with linear polarization light[J]. Optical Review, 2015, 22(5): 829–831.

[26] Wu A A, Kang G G, Zang J L, et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle[J]. Optics Express, 2015, 23(7): 8880–8887.

[27] Zhang Y Y, Kang G G, Zang J L, et al. Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle[J]. Optics Letters, 2016, 41(17): 4126–4129.

[28] Hong Y F, Kang G G, Zang J L, et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography[J]. Applied Optics, 2017, 56(36): 10024–10029.

[29] 洪一凡, 臧金亮, 刘颖, 等. 偏光全息研究历程与展望[J]. 中国光学, 2017, 10(5): 588–602.

    Hong Y F, Zang J L, Liu Y, et al. Review and prospect of polarization holography[J]. Chinese Optics, 2017, 10(5): 588–602.

[30] Pu S Z, Yang T S, Yao B L, et al. Photochromic diarylethene for polarization holographic optical recording[J]. Materials Letters, 2007, 61(3): 855–859.

[31] Fu S C, Liu Y C, Dong L, et al. Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films[J]. Materials Letters, 2005, 59(11): 1449–1452.

[32] Fu S C, Liu Y C, Lu Z F, et al. Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light[J]. Optics Communications, 2004, 242(1–3): 115–122.

[33] Pham V P, Manivannan G, Lessard R A, et al. Real-time dynamic polarization holographic recording on auto-erasable azo-dye doped PMMA storage media[J]. Optical Materials, 1995, 4(4): 467–475.

[34] Couture J J A. Polarization holographic characterization of organic azo dyes/PVA films for real time applications[J]. Applied Optics, 1991, 30(20): 2858–2866.

[35] Kawatsuki N, Matsushita H, Kondo M, et al. Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups[J]. APL Materials, 2013, 1(2): 022103.

[36] Cipparrone G, Pagliusi P, Provenzano C, et al. Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence[J]. Journal of Physical Chemistry B, 2010, 114(27): 8900–8904.

[37] Mao W D, Sun Q H, Baig S, et al. Red light holographic recording and readout on an azobenzene-LC polymer hybrid composite system[J]. Optics Communications, 2015, 355: 256–260.

[38] Zhao F L, Wang C S, Qin M, et al. Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence[J]. Optics Communications, 2015, 338: 461–466.

[39] Gallego S, Ortu o M F, Neipp C, et al. Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers[J]. Optics Express, 2007, 15(15): 9308–9319.

[40] Gleeson M R, Sabol D, Liu S, et al. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length[J]. Journal of the Optical Society of America B, 2008, 25(3): 396–406.

[41] Liu S, Gleeson M R, Sheridan J T. Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material[J]. Journal of the Optical Society of America B, 2009, 26(3): 528–536.

[42] Garc a C, Fimia A, Pascual I. Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization[J]. Applied Physics B, 2001, 72(3): 311–316.

[43] Gallego S, Ortu o M, Neipp C, et al. 3 dimensional analysis of holographic photopolymers based memories[J]. Optics Express, 2005, 13(9): 3543–3557.

[44] Gallego S, Ortu o M, Neipp C, et al. 3-dimensional characterization of thick grating formation in PVA/AA based photopolymer[J]. Optics Express, 2006, 14(12): 5121–5128.

[45] Nikolova L, Markovsky P, Tomova N, et al. Optically-controlled photo-induced birefringence in photo-anisotropic materials[J]. Journal of Modern Optics, 1988, 35(11): 1789–1799.

[46] Todorov T, Nikolova L, Tomova N, et al. Photoinduced anisotropy in rigid dye solutions for transient polarization holography[J]. IEEE Journal of Quantum Electronics, 1986, 22(8): 1262–1267.

[47] Barada D, Ochiai T, Fukuda T, et al. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave[J]. Optics Letters, 2012, 37(21): 4528–4530.

[48] Ochiai T, Barada D, Fukuda T, et al. Angular multiplex recording of data pages by dual-channel polarization holography[J]. Optics Letters, 2013, 38(5): 748–750.

[49] Lin S H, Cho S L, Chou S F, et al. Volume polarization holographic recording in thick photopolymer for optical memory[J]. Optics express, 2014, 22(12): 14944–14957.

[50] Zang J L, Kang G G, Li P, et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography[J]. Optics Letters, 2017, 42(7): 1377–1380.

[51] Ono H, Wakabayashi H, Sasaki T, et al. Vector holograms using radially polarized light[J]. Applied Physics Letters, 2009, 94(7): 71114.

[52] Ruiz U, Pagliusi P, Provenzano C, et al. Highly efficient generation of vector beams through polarization holograms [J]. Applied Physics Letters, 2013, 102(16): 161104.

[53] Matharu A S, Jeeva S, Ramanujam P S. Liquid crystals for holographic optical data storage [J]. Chemical Society Reviews, 2007, 36(12): 1868.

魏然, 臧金亮, 刘颖, 范凤兰, 黄志云, 朱莉莉, 谭小地. 应用于高密度存储的偏光全息技术研究进展[J]. 光电工程, 2019, 46(3): 1. Wei Ran, Zang Jinliang, Liu Ying, Fan Fenglan, Huang Zhiyun, Zhu Lili, Tan Xiaodi. Review on polarization holography for high density storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!