作者单位
摘要
福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室福建省光子技术重点实验室,福建 福州 350007
理论分析了浑浊介质的声光作用机制。采用COMSOL Multiphysics软件对组织中的声光作用过程进行了仿真,讨论了组织吸收系数与声光信号相对强度的关系。仿真结果表明,声光信号与入射光强呈线性递增关系,声光信号相对强度与介质吸收系数呈指数下降关系,实验结果与仿真结果相吻合。利用声光成像实验测量厚度为10 mm的浑浊介质的吸收系数,真实值与测量值最大绝对误差为0.082 cm-1,最大相对误差为9.3%。
生物光学 声光成像 声光作用机制 吸收系数测量 
光学学报
2024, 44(4): 0417001
作者单位
摘要
福建师范大学光电与信息工程学院,医学光电科学与技术教育部重点实验室,福建省光子技术重点实验室,福建 福州 350007
采用COMSOL Multiphysics软件对不同结构组织中的声光作用过程进行仿真,讨论轴向和径向的光分布特点以及单层和多层组织光学参数对声光信号的影响。仿真结果表明:入射光束的大小对轴向和径向光的衰减速度以及轴向能流率峰值出现位置均产生影响;声光信号的峰峰值、平均值以及调制深度均随单层组织光学特性的改变而规律性变化;对于多层结构,声光信号的调制深度仅取决于靶组织的光学特性,与非靶组织的光学特性无关。
生物光学 声光作用机制 光学参数 多层组织 调制深度 
光学学报
2023, 43(10): 1017001
作者单位
摘要
中国科学院上海硅酸盐研究所, 上海 201800
以Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT或PMNT)为代表的弛豫铁电单晶具有远高于常用锆钛酸铅Pb(ZrxTi1-x)O3(PZT)陶瓷的压电性能, 引起了基于新一代压电单晶的功能器件研究热潮。本研究团队在国际上率先利用Bridgman方法生长出了大尺寸、高质量PMN-PT等弛豫铁电单晶(d33~2 000 pC/N, k33~92%), 并对PMN-PT等弛豫铁电单晶的生长、多层次微观结构和性能调控进行了多方面的研究, 发现弛豫铁电单晶不仅具有超高压电性能, 还具有突出的热释电性能、电光性能以及与磁致伸缩材料复合形成磁电复合材料的超高磁电耦合性能。本研究团队多年来一直在努力推动弛豫铁电单晶在医用超声换能器、热释电红外探测器、电光器件、磁电型弱磁传感器等各种器件的应用研究。本文主要总结了弛豫铁电单晶的多功能特性, 并介绍了本研究团队在弛豫铁电单晶器件应用上的研究结果。
弛豫铁电单晶 器件应用 超声换能器 热释电红外探测器 电光器件 弱磁传感器 relaxor ferroelectric single crystal PMN-PT PMN-PT device application ultrasonic transducer pyroelectric infrared detector electro-optic device weak magnetic sensor 
人工晶体学报
2021, 50(5): 783
作者单位
摘要
福建师范大学光电与信息工程学院信息光子学研究中心, 福建 福州 350117
在基于张量的偏光全息理论的基础上,使用偏振方向在入射面内的线偏振光作为记录参考光,记录干涉夹角为90°时,只需满足再现光与记录参考光的偏振方向非相互正交,就可以实现对信号光偏振态的忠实再现,再现光光强受读取参考光偏振态的影响。理论与实验结果证实了这一更宽松条件下对信号光忠实再现的可能性。该结论有助于拓展人们对偏光全息理论的认知,并可依此结论设计和制作出用于改变入射光传播方向的偏振器件。
全息 偏振态 张量理论 忠实再现 
光学学报
2020, 40(23): 2309001
作者单位
摘要
福建师范大学光电与信息工程学院, 福建省光电传感应用技术工程研究中心, 医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
基于血管弹性成像原理,利用光声成像技术测量不同压力作用下血管内径的变化情况,通过建立光声信号的时域特征模型,计算用于分析血压-管径特征关系的信息,再结合希尔伯特变换等数字信号处理方法进行分析,由此获得了组织中弹性力学性质的空间分布情况。实验结果表明:压力、血管管径与光声信号峰峰值的时间间隔呈单调递增的关系,该技术可用于快速、实时地检测血管直径的变化,为光声成像技术实现非侵入式动态血压测量提供了理论依据。
医用光学 光声信号 弹性成像技术 血管管径 压力 
激光与光电子学进展
2019, 56(16): 161701
作者单位
摘要
1 北京理工大学光电学院光电成像技术与系统教育部重点实验室,北京 100081
2 福建师范大学光电与信息工程学院,信息光子学研究中心,福建 福州 350117
偏光全息术通过记录两束偏振光干涉形成的偏振光栅,可以把偏振光信息存储在偏振敏感材料当中。偏光全息把传统全息术中长期被忽视的光波偏振信息加以利用,在加大了存储容量的同时,也具有了许多独特的性质。本文简要介绍了偏光全息的发展历程,描述了基于张量的偏光全息理论及其一些推论,然后对偏光全息在数据存储领域的应用作了介绍,并做出展望。
光学数据存储 全息存储 偏光全息 张量理论 optical data storage holographic storage polarization holography tensor theory 
光电工程
2019, 46(3): 1
作者单位
摘要
1 集美大学理学院, 福建 厦门 361021
2 医学光电科学教育部重点实验室, 光子技术福建省重点实验室, 福建师范大学光电与信息工程学院, 福建 福州 350007
光声成像技术是近年来兴起的前列腺早期检测与成像的新技术。前列腺组织的结构特征需要一种无创的且光穿透深度足够大的光声激发方式。本文设计了一种可用于经由尿道对前列腺光辐照的侧向光源, 并结合直肠处长焦区聚焦式超声换能器的光声探测展开了前列腺仿体的光声扫描成像。结果表明, 侧向光源有利于单侧吸收体的定位和成像, 具有较好的成像范围和深度, 结合侧向光源的旋转可实现全方位成像。因此该侧向光源有望成为早期前列腺肿瘤光声成像技术中一种新型的光源结构, 具有重要意义。
医用光学与技术 光声成像 无损诊断 侧向光源 前列腺 medical optics and biotechnology photoacoustic imaging non-invasive diagnosis side-firing fiber prostate 
激光生物学报
2017, 26(3): 205
作者单位
摘要
福建师范大学光电与信息工程学院医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建 福州 350007
具有超声定位的高空间分辨率特点和光学检测的高灵敏度特点的超声调制光学成像(UOT)既可以对光吸收介质进行成像也可以对光散射介质进行成像。在介质和光电倍增管(PMT)之间放置两个小孔,通过控制PMT 的探测位置提高了系统的信噪比和成像对比度,同时获得了浑浊介质中隐含散射体和吸收体的一维成像。实验结果表明在不同的探测位置处,超声调制光信号的调制深度M 与介质的吸收系数和散射系数的关系不同。选择合适的PMT 探测位置,超声调制光学成像信号不仅可以体现吸收体和散射体的大小和强弱,还可以分辨出吸收体和散射体的不同。
生物光学 光学成像 超声调制 吸收体 散射体 
中国激光
2015, 42(2): 0204001
作者单位
摘要
福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室, 福建师范大学光电与信息工程学院, 福建 福州 350007
生物组织是一种复杂的多层高散射介质, 探索光在超声作用下的生物组织中的传播规律是超声调制光学成像术必须解决的一个基本问题, 关系到最终进行图像处理与重建。通过实验探索超声调制光信号在双层和三层组织中的传播规律。实验结果表明非靶组织的光学属性(吸收系数和散射系数)和组织结构(单层或多层)都不影响超声调制光信号的调制深度。调制深度只与超声焦区介质(即靶组织)的声光属性有关, 具有较佳的抗干扰性, 适合用于图像重构。
生物光学 超声调制 非靶组织 调制深度 散射光 biotechnology ultrasonic modulation non-target tissue modulation depth scattering light 
激光生物学报
2014, 23(5): 390
作者单位
摘要
福建师范大学医学光电科学与技术教育部重点实验室, 福建省光子技术重点实验室,福建师范大学光电与信息工程学院, 福建 福州 350007
选择准确、合适的成像信号是提高超声调制光学层析成像(UOT)灵敏度和对比度的关键。利用快速傅里叶变换(FFT)获得了超声调制信号的的频谱图像,其中零频强度I0代表着未被超声调制的光信号的谱强度,而在超声探头频率范围内(0.2~1.8 MHz)的谱强度之和表示受超声调制信号的谱强度If。与时域信号相比较,谱强度If对介质的光学性质有较高的灵敏度,但它容易受非靶组织(介质)的影响。而频谱信号的调制深度M2(M2=If/I0)不易受非靶组织(介质)的影响,有较强的抗干扰性,但它对靶组织(介质)的光学属性的灵敏度低。结果表明,采用超声调制光信号的频谱进行图像处理和重构并不比时域信号更具优势。
光谱学 超声调制 光学层析成像 快速傅里叶变换 谱强度 
中国激光
2013, 40(s1): s115001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!