中国激光, 2022, 49 (4): 0404001, 网络出版: 2022-01-18   

基于布里渊散射的海水参数测量反演算法研究 下载: 827次

Investigation on Inversion Algorithm of Seawater Parameters Measurement Based on Brillouin Scattering
作者单位
1 东华大学理学院,上海 201620
2 中国科学院上海光学精密机械研究所空间激光信息技术研究中心,上海 201800
3 中国科学院空间激光信息传输与探测技术重点实验室,上海 201800
摘要
海洋温度和盐度是重要的海洋环境参数,对了解海洋性质、生物多样性具有重要作用。本文基于碘分子吸收池的边缘探测技术,将携带有温度信息的布里渊散射光分为三束,这三束光分别通过三个压强不同的碘分子吸收池,形成三个探测通道,得到两个信号的强度比值信息;之后利用迭代算法即可同时反演出被测区域的温度和盐度信息。采用探测器输出信号强度比值的形式能有效抑制激光器光强抖动带来的影响。为将测温误差控制在0.2 K以内,所提算法对探测器输出强度比值的随机抖动程度为1.3‰。本技术路线具有不受入射角影响、测量速度快、无需事先知晓盐度信息等优势,有望应用于机载、星载等移动平台上。
Abstract
Objective

Real-time and accurate remote sensing of ocean temperature and salinity information are of great significance for understanding ocean properties and biodiversity. At the same time, it can forecast weather or temperature changes based on ocean temperature and salinity data. Brillouin scattering frequency shift is not easily affected by background noise due to its temperature sensitivity and narrow scattering spectrum, allowing for active remote sensing of ocean temperature and salinity.

Methods

Compared with the traditional Fabry Perot interferometer technique, the edge detection technique has faster measurement time, nothing to do with the incident angle while detecting signal intensity, and the parameters of the molecular absorption cell are also easy to control. It is suitable for airborne, satellite, and other large-scale ocean detection needs, and has become a popular technique for detecting ocean temperature and salinity information using the Brillouin scattering method. The edge detection technique has a limitation in that it converts Brillouin frequency shift into signal intensity change based on the characteristic absorption lines of molecules. It must extract Brillouin frequency shift information from the detected signal intensity. The two edge lines of molecular absorption used for detection are not necessarily symmetrical, and changing the laser frequency in the system will directly affect the change in output signal intensity, so laser frequency stability is extremely important. But with the development of laser frequency stabilization technology, laser frequency stability has been greatly improved. Simultaneously, both the Fabry Perot interferometer technique and the molecular absorption cell technique based on Brillouin scattering require the salinity information to be assumed in advance, and then use the empirical formula of Brillouin frequency shift, salinity, and temperature to inverse the temperature. The salinity of the ocean profile differs from the salinity of the sea surface depending on the season, region, and so on (Fig.7). If the fixed salinity is substituted into the temperature inversion formula, some systematic temperature measurement error will inevitably result, so the salinity variation factor must be considered in the temperature measurement technique. To obtain ocean temperature and salinity information efficiently on airborne, satellite, and other mobile platforms, the random jitter of the sea surface urgently needs the detection system to have a larger receiving field of view. In this paper, we make full use of laser development achievements, take the technical route based on iodine molecular absorption cell, combine with the absorption line of iodine cell, stabilize the laser frequency at 532.2334112 nm, which is the strong absorption line of iodine molecule, and effectively filter out elastic scattering. After passing through the absorption cell, the steep absorption lines on both sides of the band cause the frequency shift and full width at half maximum change due to signal intensity change caused by temperature change. The relationship between temperature and normalized signal intensity is obtained by fitting the relationship between temperature and full width at half maximum, and the widely used empirical formula of temperature and salinity with Brillouin frequency shift (Fig.3). To avoid temperature measurement errors caused by laser intensity jitter, the system employs a three-iodine cell design scheme, so that the laser intensity jitter can be converted into common-mode noise and removed (Fig.4). It is discovered that in the temperature range discussed, the signal intensity ratio curve and difference curve of an iodine molecular cell with different salinity can maintain monotonicity and disjointness (Fig.6). As a result, a set of signal intensity ratio and ratio difference data can only be determined from a pair of temperature and salinity data.

Results and Discussions

An innovative algorithm is proposed (Fig.8). The algorithm can inverse the temperature and salinity information repeatedly after the actual measurement of two groups of ratio data. Simulation is used to validate the program’s dependability. This set of inversion algorithm does not need to assume salinity information in advance, and instead uses an iterative algorithm based on the intensity ratio and ratio difference of the detector output to achieve accurate temperature and salinity inversion at the same time (Fig.10). The allowable intensity ratio random jitter is 1.3‰ to ensure that the inversion temperature error is less than 0.2 K from 5 ℃ to 30 ℃. The temperature inversion error between 10 ℃ and 20 ℃ is small. The temperature inversion error of 0.2 K can still be satisfied when the random jitter of intensity ratio is 2.3‰ in the temperature range of 10 ℃ to 20 ℃ (Fig.11).

Conclusions

A new edge detection technique based on iodine molecular absorption cells is proposed. This technical path has the advantages of signal intensity detection independent of incident angle, fast measurement speed, not being easily affected by laser intensity jitter, and not requiring salinity information. It is expected to be used on airborne, spaceborne, and other large mobile platforms, and it has a promising future application.

1 引言

实时准确地遥感海洋温度、盐度信息对于了解海洋性质[1-2]、海洋中的生物多样性[3-4]具有重要意义[5-6],同时也能通过海洋温度剖面信息来预测天气或者气温变化[7]。目前,大范围的海洋温度信息主要是海表温度信息,来源于被动遥感卫星,温度剖面信息比较缺乏。布里渊散射具有频移量对温度敏感、散射谱线窄、不易受背景噪声影响等特点,为海洋温度剖面的主动遥感提供了可能[68]。该方面的研究始于20世纪60年代[79],典型代表是德克萨斯A&M大学的Fry教授团队。该团队在实验中先采用注入式锁模脉冲激光器以及高精度扫描法布里-珀罗干涉仪获得高精度布里渊散射光谱[10],然后利用布里渊频移与温度、盐度的经验公式,在海水盐度已知的条件下,以0.1 ℃的理论精度反演了海表下100 m以内的温度。除了温度测量外,该团队还将布里渊散射技术用于水下声速和水下物体的探测,并对理论误差进行了详细的推导和分析[7]。北京师范大学的刘大禾教授团队和南昌航空大学的何兴道教授团队采用基于法布里-珀罗干涉法的布里渊散射方法在实时测量水中声速[9-13]、水体的黏滞系数[14]、水下物体探测以及受激布里渊[15]等方面进行了大量工作,他们获得的声速的理论精度可达0.22 m/s,温度的理论精度可达到0.1 ℃。华中科技大学的梁琨教授团队[16]对基于边缘探测技术的海表温度的精度及误差进行了分析,结果表明,在7.2~7.9 GHz的布里渊频移范围内,布里渊频移的测量误差约为0.04~0.33 MHz。法布里-珀罗技术作为布里渊散射谱的检测技术,其优势在于能获取完整的布里渊散射谱线[17],局限性在于系统对入射视场的要求十分严格,极小的入射角变化就会导致较大的光谱精度变化[18];同时,该技术对入射光的平行度要求很高,信号接收视场小,响应速度不够快,因此难以在机载、星载等移动平台上应用。北京师范大学[19]在国内首次报道了将基于分子吸收池的边缘探测技术用于布里渊散射频移的提取,该技术方案的优势在于:实时性好,测量时间较之传统的法布里-珀罗干涉仪法减少了约34%[20];信号强度的探测与入射角无关,分子吸收池参数易控制,适合机载、星载等大范围海洋探测的需求。局限性在于,该方法基于分子的特征吸收谱线将布里渊频移变化转化为强度变化进行探测,需要从探测得到的信号强度信息中提取布里渊频移信息,而用于检测的分子吸收双边缘线不一定对称,系统中激光频率的变化会直接影响输出光强的变化,所以对激光器的频率稳定性有十分严格的要求[18]。可喜的是,随着激光器稳频技术的发展,激光器的频率稳定性已得到大幅提升。采用高增益磷酸盐玻璃光纤作为增益介质,得到的频率长期稳定性可达2.5 MHz/h[21]。这为基于气体吸收池的布里渊散射测温技术注入了生机[21-22]。在温度反演方面,基于法布里-珀罗干涉仪以及基于分子吸收池的布里渊散射测温技术路线均需事先假定海水的盐度信息,然后利用参考文献[11]给出的布里渊频移、盐度与温度的经验公式来反演温度。而不同季节、区域的海洋剖面盐度与海表盐度存在一定差异[23],若将固定的海水盐度代入温度反演公式,则势必带来一定的系统测温误差。基于机载、星载等移动平台高效获取海洋温度剖面信息时,海表的随机抖动要求探测系统具有较大的接收视场。鉴于此,本文充分利用激光器的发展成果,采用基于分子吸收池的技术路线,结合碘分子吸收池的吸收谱线,将激光器稳频于532.2334112 nm这一碘分子强吸收谱线上,从而将弹性散射有效滤除。该波段双侧的陡峭吸收线使得温度变化带来的频移及半峰全宽变化可以被转化为激光束透过吸收池后的强度变化。另外,为避免激光器自身的光强抖动给系统带来测温误差,系统采用了多个碘分子吸收池的设计方案,从而将激光器光强抖动转化为共模噪声并加以去除;在温度反演算法方面,系统无需事先假定海水盐度的具体数值,信号处理系统可以通过迭代算法确定温度和盐度信息;最终,以测温精度0.2 K为设计目标,给出了系统容许的强度测量比值误差。

2 原理

2.1 仿真原理

基于分子吸收池的边缘探测技术的基本原理是将被测光的频率定位于特定气体吸收线的边缘。由于在吸收线的边缘,透过率谱线具有很陡的斜率,因此被测光频率的微小变化就会导致其通过分子吸收池后的信号强度发生显著变化,从而实现被测光频率的精确测量。碘分子吸收池的吸收谱线可以通过仿真软件获取。碘分子吸收谱线在532.2334112 nm处有极高的吸收率,在该波长左右两侧(距离中心7.5 GHz±0.5 GHz)的吸收谱线可以最大限度地透过布里渊散射光谱,且吸收谱线斜率陡峭,故采用一个碘分子吸收池既可以滤除瑞利散射光又能有效提取布里渊散射光。仿真中使用碘分子127号同位素。在碘分子吸收池温度为343 K、压强为2128 Pa、碘分子吸收池长度为10.16 cm、低波数为18787.4 cm-1、高波数为18790.4 cm-1、盐度为35‰的条件下的模拟探测过程如图1所示。

图 1. 模拟边缘探测过程

Fig. 1. Simulation of edge detection process

下载图片 查看所有图片

图1中的虚线为碘分子吸收谱线,多条实线是布里渊频移为7.4~7.8 GHz且以0.03 GHz为步长的布里渊散射谱线及瑞利散射谱线,框内为所使用的边缘吸收线。由图1可以看出,在532.2334112 nm波长处,吸收谱线轮廓的斜率基本为0,故吸收透过率也几乎为0,且左右两端(距离中心7.5 GHz±0.5 GHz)吸收谱线轮廓具有很陡的斜率。因此,将激光器的波长固定在532.2334112 nm处,这样既能利用532.2334112 nm处透过率基本为0的吸收谱线特性滤除瑞利散射谱线,又能利用左右两侧斜率很陡且可最大限度地透过布里渊散射的谱线,从而布里渊频移的微小变化即可带来信号强度的显著变化。图1中的布里渊频移为7.4~7.8 GHz,对应的温度范围为4.27~31.26 ℃,覆盖了海洋的大部分温度范围。

在布里渊散射光谱中,布里渊频移的定义为 ΔυB(ST)2n(ST)λVs(ST)sin(θ2)式中:S为盐度;T为温度;λ为入射光在真空中的波长;n为传输介质的折射率,在本文中即为海水的折射率;Vs为水中的声速;θ为散射角。若取水中的声速Vs=1500 m/s,海水的折射率n=1.33,入射光波长λ=532 nm,则可得后向散射(θ=180°)时散射光的中心频移为ΔυB=7.5 GHz。目前广泛采用的温度与盐度、布里渊频移关系的经验公式为[7]T(S,ΔυB)=t0+t1(ΔυB7.5)+t2(ΔυB7.5)2+t3(ΔυB7.5)3+t4(ΔυB7.5)6+S[t5+t6(ΔυB7.5)+t7(ΔυB7.5)2+t8(ΔυB7.5)3],各系数tj(j=0~8)的值分别为:t0=23.5,t1=65.5,t2=75,t3=252,t4=1100,t5=-0.402,t6=-0.287,t7=-0.902,t8=-5.5。这些参数适用于盐度为30‰~40‰、布里渊频移为7.0~8.0 GHz的情形。在盐度给定的情况下,若能得到布里渊散射频移,即可根据(2)式得到温度信息。以海水的平均盐度35‰为例,当布里渊频移的变化范围为7.4~7.8 GHz时,对应的海水温度范围为5~30 ℃。

另一个重要的参数为布里渊散射的半峰全宽。根据盐度为35‰时测得的实验图像[14],按照经验规律[24]拟合得到了半峰全宽(FWHM)与温度的关系,如图2所示。

图 2. 温度与半峰全宽的关系

Fig. 2. Relationship between temperature and full width at half height (FWHM)

下载图片 查看所有图片

图2中,虚线为参考文献[14]中的实验测量数据,实线为拟合数据。从图中可以看出,曲线拟合良好,相关系数达到0.95以上。拟合得到的半峰全宽与温度的经验公式为 Γ1.768exp(0.1424T0.5115)式中:Γ为半峰全宽,单位为GHz;T为温度,单位为℃。布里渊散射的光谱形状函数采用洛伦兹函数进行拟合[25],即 fB(υΔυB)11(υυ0±ΔυBΓ)2式中:υ为后向散射(θ=180°)时散射光的频率,单位为GHz;ΔυB为布里渊频移,单位为GHz。对于弹性散射瑞利散射光谱,采用高斯函数进行拟合[17],即 fRAexp[(υυ0)22(Γ2lg2)2]式中:A是常数,反映了瑞利散射的光谱峰值与布里渊散射的光谱峰值之比;Γ′为瑞利散射峰的半峰全宽,单位为GHz。因为中心的瑞利散射没有频移,所以Γ′不变。

图1所示的模拟边缘探测过程产生的信号强度信息为 S(υ)I0f(υΔυB)gI(υ)dυ式中:f(υ,ΔυB)是包含瑞利散射和布里渊散射的光谱拟合函数,f(υ,ΔυB)=fB(υ,ΔυB)+fRgI(υ)为碘分子的吸收谱线。按照图1及(1)~(6)式得到了激光通过特定压强碘分子吸收池后的归一化强度与温度之间的关系曲线,如图3所示。

图 3. 归一化强度与温度的关系

Fig. 3. Relationship between temperature and normalized intensity

下载图片 查看所有图片

图3可知,在给定的温度范围内,归一化强度随着温度的升高而下降,尤其是在10~20 ℃这一温度范围内,斜率比较陡峭。这说明此温度范围对应的布里渊散射谱线处于碘分子吸收谱线吸收率变化较大处。

基于分子吸收池的边缘探测技术的基本原理是通过信号强度的变化来反推温度信息。若采用单一的碘分子吸收池,则激光器本身的强度波动也会耦合进入温度误差,而采用两个不同碘分子吸收池输出信号强度之比的形式则可以避免光强抖动带来的误差。另外,温度、盐度会同时影响布里渊频移及布里渊光谱的半峰全宽,从而影响碘分子吸收池的透过强度,因此本系统设计了三个压强不同的碘分子吸收池,可得到两个信号强度比值信息,用于反演温度、盐度信息。系统框图如图4所示。

图 4. 系统设计框图

Fig. 4. Experimental block diagram

下载图片 查看所有图片

图4中,激光器出射光进入水箱,为了防止激光输出功率太强而淹没布里渊散射光,结合瑞利散射特征,在90°散射方向上通过透镜收集散射光信号,使布里渊散射受瑞利散射的影响最小。散射光经透镜聚焦后进入多模光纤。设计多模光纤是为了便于与后续光路系统连接。之后,分束器将激光等分为三束,三束激光分别进入三个压强不同的碘分子吸收池,探测器将碘分子吸收池输出的强度信号转化为电信号,模数(A/D)转换器将电信号转化为数字电信号,信号处理部分在计算机中完成。图4中的实线为光路,虚线为电路。三个探测器Det Ⅰ、Det Ⅱ、Det Ⅲ为同型号光电倍增管,其输出电信号的幅度与输入光强呈线性关系。假设三个探测器的输出分别为I1I2I3,则可得到两个独立的比值(I1/I2I3/I2)以及比值的差值(I1/I2-I3/I2)。

因本系统根据比值及比值差来反推被测区域的温度和盐度,故三个碘分子吸收池压强的选择原则是两个比值及比值差随温度的变化曲线必须具有单调性,且在不同盐度下比值和比值差曲线不相交。曲线斜率越大,越有利于温度的精密探测。假设采用的三个碘分子吸收池长度均为10.16 cm,压强分别为2128,1064,3192 Pa。由于通过压强为1064 Pa的碘分子吸收池的归一化光强斜率较小,所以采用该碘分子吸收池作为I2可以最大限度地提高I1/I2I3/I2曲线的斜率,则I1I3对应的碘分子吸收池压强分别为2128 Pa和3192 Pa。在盐度为35‰,I1I2I3分别对应碘分子吸收池压强为2128,1064,3192 Pa时,由理论计算得到的探测器输出强度比值、比值差与温度的关系如图5所示。

图 5. 盐度为35‰时,探测器输出强度比值、强度比值差与温度的关系。(a)强度比值与温度的关系;(b)强度比值差与温度的关系

Fig. 5. Relationship between detector output intensity ratio or intensity ratio difference with temperature when salinity is 35‰. (a) Relationship between intensity ratio with temperature; (b) intensity ratio difference with temperature

下载图片 查看所有图片

图5可知,两条比值曲线I1/I2I3/I2与比值差曲线I1/I2-I3/I2在图中所示温度区间内均保持单调,且两条比值曲线互不相交。但是,这三个变量当中只有两个是独立变量。斜率较大的曲线会使布里渊散射光的透过率较高,因此在后续反演算法中选取斜率较大的比值曲线I3/I2以及比值差曲线I1/I2-I3/I2进行计算。当盐度区间为30‰~40‰且盐度间隔为1‰时,比值曲线I3/I2及比值差曲线I1/I2-I3/I2的理论计算结果如图6所示。

图 6. 盐度为30‰~40‰时,探测器输出强度比值曲线和强度比值差曲线。(a)强度比值曲线;(b)强度比值差曲线

Fig. 6. Detector output intensity ratio and intensity ratio difference curves when salinity is 30‰40‰. (a) Intensity ratio curves; (b) intensity ratio difference curves

下载图片 查看所有图片

为清晰地展示不同盐度下强度比值、强度比值差的区别,图6缩小了温度区间的范围。可见:不同盐度下,比值曲线I3/I2与比值差曲线在图示温度范围具有单调性,且两两曲线之间互不相交,即:一个特定的温度和一个特定的盐度可以唯一对应一个特定的强度比值和比值差。在反演算法中将利用这种一一对应关系,基于测得的强度比值和比值差来实现温度和盐度的反演。

2.2 反演算法

WOA13网站提供的海洋剖面盐度信息显示,绝大多数海域的盐度范围为30‰~40‰。图7以渤海、东海海水剖面盐度为例,给出了海水剖面盐度与深度之间的关系。

图 7. 中国渤海、东海盐度剖面变化图。(a)渤海;(b)东海

Fig. 7. Salinity profiles of Bohai Sea and East Sea in China. (a) Bohai Sea; (b) East Sea

下载图片 查看所有图片

图7中可看出,盐度随剖面而改变,变化范围为30‰~34‰。若以海表处的盐度作为整个剖面的盐度,则势必会给温度测量带来误差。以盐度为35‰为例,根据(2)式,35‰处1‰的盐度误差最高会带来0.69 ℃的温度误差。若反演算法无需精确假定盐度信息,则对提高温度精度很有帮助。本系统反演算法流程如图8所示。

图 8. 反演算法

Fig. 8. Inversion algorithm

下载图片 查看所有图片

图5(a)可知存在两条斜率不同的比值曲线。本系统采用斜率较大的比值曲线即I3/I2进行反演运算,因为斜率较大的曲线带来的反演误差相对较小。在真实实验系统中,通过三个探测器的输出可以得到两组独立量I3/I2I1/I2-I3/I2。本文在30‰~40‰的盐度范围内进行反演。图8所示反演算法第一步即输入一对合理的强度比值和比值差数据。在反演算法中,强度比值、比值差数据由相应的温度、盐度计算得到,而在实际应用中直接测量即可。算法的第二步是根据输入的比值得到温度范围[TminTmax],如图6(a)所示;第三步是根据输入的比值差和确定的温度范围[TminTmax]得到盐度范围[SminSmax],如图6(b)所示;第四步开始进入迭代循环判断,Terror=max(|Tmin-Ttrue|,|Tmax-Ttrue|)是每次迭代的最大温度误差,Ttrue是为了保证反演算法的可行性而人为假定的由比值和比值差对应的真实温度,在实际测量中并不存在。γ是系统为保证反演精度而设定的阈值,若不满足阈值条件,则一直进行迭代循环。通过[SminSmax]与比值不断更新[TminTmax],通过更新的[TminTmax]与比值差不断地更新[SminSmax];当Terror<γ时跳出循环,输出[TminTmax]和[SminSmax]。系统取TminSmin作为反演的温度和盐度。图8所示的算法在处理器为i9-10900X、内存为256 GB、操作系统为64位的计算机中运行,从获取数据到输出结果需要30 s左右。

3 仿真结果

3.1 算法可靠性验证

根据上述原理,三个碘分子吸收池的压强分别选定为2128,1064,3192 MPa,反演温度误差Terror的阈值γ设定为0.05 K。在强度比值和比值差不添加抖动、盐度范围为30‰~40‰,变化步长为0.1‰的条件下,根据反演算法得到的反演温度误差如图9所示。

图 9. 不同盐度下的温度反演误差

Fig. 9. Temperature inversion error under different salinities

下载图片 查看所有图片

图9可知,在不添加抖动的情况下,最大的反演温度误差为0.0135 K,因此可将Terror的阈值γ设定为0.015 K。从图9中还可以看出,当温度为20~25 ℃时,反演的温度误差较大。其原因可参考图5(a)中的强度比值曲线进行解释:温度为20~25 ℃时,强度比值曲线的斜率较小,即在此温度范围内布里渊散射光谱通过碘分子吸收池后的光强变化较小。

以输入比值I3/I2、比值差I1/I2-I3/I2分别选取0.6477、0.1230为例(对应的理论温度、盐度分别为14.26 ℃和35‰),迭代算法的收敛过程如图10所示。

图 10. 迭代算法的收敛过程。(a)温度收敛曲线;(b)盐度收敛曲线

Fig. 10. Convergence of iterative algorithm. (a) Temperature convergence curve; (b) salinity convergence curve

下载图片 查看所有图片

图10的横坐标为迭代次数,纵坐标为每次迭代输出的温度、盐度的范围。可见,随着迭代次数增加,温度、盐度的范围逐渐变小,说明迭代算法具有良好的收敛性。因此,在实际测量中,若无随机抖动,系统无需设定盐度,只需根据探测器输出的强度比值,即可反演得到精确的温度和盐度。

3.2 信号强度抖动对反演精度的影响

反演的温度、盐度与碘分子吸收池输出的强度比值密切相关。除共模噪声外,一些随机抖动也会影响探测器的输出强度,从而影响两个比值。仍以图5的仿真参数为例,并在I1/I2I3/I2比值中添加了不同程度的强度随机抖动。在不同盐度下,不同温度对应的温度反演误差如图11(a)、(b)所示;为达到0.2 K的温度反演精度,不同温度下对强度比值随机抖动程度的要求如图11(c)所示。

图 11. 在强度比值中添加不同程度抖动后的温度反演误差。(a)添加1.3‰随机抖动;(b)添加1‰随机抖动;(c)0.2 K误差容忍度

Fig. 11. Temperature inversion error when adding different degrees of jitter to intensity ratio. (a) Adding 1.3 per 1000 jitter; (b) adding 1 per 1000 jitter; (c) 0.2 K error tolerance

下载图片 查看所有图片

图11(a)、(b)选取的盐度区间为30‰~40‰,盐度变化步长为万分之一。由这两图可知:在添加不同量级的随机抖动后,温度反演误差的整体趋势是一致的;随机抖动的程度越大,温度反演的误差就越大;10~20 ℃对应的反演误差相对较小,这是因为归一化强度与温度曲线在此区间有较大斜率。当随机抖动为1.3‰时,反演的最大温度误差已经逼近0.2 K,故可得到结论:为在5~30 ℃温度范围内均满足0.2 K的温度反演误差,系统需将不同碘分子吸收池输出的强度比值随机抖动误差控制在1.3‰以内。若进行实际测量,则相应的信噪比为769,则所需光电子数约为60000个,所需能量为2.24×10-14 J。若以激光器输出功率为0.01 W、布里渊散射系数为9.6806×10-8、点光源发出散射光的立体角为0.0709 Sr进行计算,则需要的探测时间为0.037 s。由图11(c)可知:为满足0.2 K的温度反演误差,温度在14.6 ℃时对强度比值允许的随机抖动程度可达0.23%,是温度为30 ℃时的1.6倍;其他温度范围能够容忍的抖动较小。这可能是因为在10~20 ℃温度范围内归一化光强曲线的斜率较大,布里渊散射光谱的透过率较高,从而能够容忍的抖动较大;而其他温度范围的归一化光强曲线的斜率较小,布里渊散射光谱的透过率较低,因此能够容忍的抖动较小。这也可以说明本文算法在10~20 ℃温度范围内的反演结果较好。

4 结论

本文基于分子吸收池的边缘探测技术,利用布里渊散射及三个压强不同的碘分子吸收池来反演海洋水体的温度、盐度信息。仿真过程中充分考虑了不同温度、盐度对布里渊散射频移及布里渊光谱带宽的影响。反演算法无需事先假定盐度信息,只需根据探测器输出的强度比值和比值差,就可以利用迭代算法实现温度和盐度的同时精确反演。为在5~30 ℃内保证反演温度误差小于0.2 K,允许的强度比值随机抖动程度为1.3‰。其中10~20 ℃内的反演误差较小,此温度范围内强度比值随机抖动程度为0.23%时,仍可以满足0.2 K的温度反演误差。本技术具有信号强度探测与入射角无关、测量速度快、不易受激光器光强抖动影响、无需假定盐度信息的优势,有望应用于机载、星载等大移动平台上,具有广阔的应用前景。

参考文献

[1] 薛彬, 王志洋, 张凯, 等. 基于声光效应的海水声速测量[J]. 中国激光, 2019, 46(4): 0404008.

    Xue B, Wang Z Y, Zhang K, et al. Seawater sound velocity measurement based on acousto-optic effect[J]. Chinese Journal of Lasers, 2019, 46(4): 0404008.

[2] 张秀再, 徐茜, 刘邦宇, 等. 海洋气溶胶对自由空间量子通信性能影响[J]. 光学学报, 2020, 40(20): 2027001.

    Zhang X Z, Xu X, Liu B Y, et al. Influence of marine aerosols on performance of free-space quantum communication[J]. Acta Optica Sinica, 2020, 40(20): 2027001.

[3] 徐润洁, 龚一富, 韦凤娟, 等. 不同光质条件下三角褐指藻光合生理指标与岩藻黄素含量的相关性分析[J]. 中国激光, 2020, 47(5): 0507001.

    Xu R J, Gong Y F, Wei F J, et al. Correlation analysis of photosynthetic physiological indexes and content of fucoxanthin in Phaeodactylum tricornutum under different light quality conditions[J]. Chinese Journal of Lasers, 2020, 47(5): 0507001.

[4] 李楠, 孙德勇, 环宇, 等. 黄渤海浮游植物种群比吸收光谱的确定及其应用[J]. 光学学报, 2020, 40(6): 0601004.

    Li N, Sun D Y, Huan Y, et al. Determination and application of specific absorption spectra of phytoplankton species in Yellow Sea and Bohai Sea[J]. Acta Optica Sinica, 2020, 40(6): 0601004.

[5] Collins D J, Bell J A, Zanoni R, et al. Recent progress in the measurement of temperature and salinity by optical scattering[J]. Proceedings of SPIE, 1984, 0489: 247-269.

[6] Hickman G D, Harding J M, Carnes M, et al. Aircraft laser sensing of sound velocity in water: Brillouin scattering[J]. Remote Sensing of Environment, 1991, 36(3): 165-178.

[7] Leonard D A, Caputo B. Raman remote sensing of the ocean mixed-layer depth[J]. Optical Engineering, 1983(3): 223288.

[8] Guagliardo J L, Dufilho H L. Range-resolved Brillouin scattering using a pulsed laser[J]. Review of Scientific Instruments, 1980, 51(1): 79-81.

[9] Leonard D A, Caputo B, Hoge F E. Remote sensing of subsurface water temperature by Raman scattering[J]. Applied Optics, 1979, 18(11): 1732-1745.

[10] Emery Y, Fry E S. Laboratory development of a lidar for measurement of sound velocity in the ocean using Brillouin scattering[J]. Proceedings of SPIE, 1997, 2963: 210-215.

[11] Fry E S, Emery Y, Quan X H, et al. Accuracy limitations on Brillouin lidar measurements of temperature and sound speed in the ocean[J]. Applied Optics, 1997, 36(27): 6887-6894.

[12] Liu D H, Quan X H. Range and line resolved Brillouin scattering in pure water using pulsed Nd∶YAG laser[J]. Chinese Journal of Lasers, 1995, B4(2): 123-126.

[13] Liu D H. Real time measurement of sound speed in sea water using Brillouin scattering[J]. Acta Acustica, 1998, 23(2): 184-188.

[14] 石锦卫, 弓文平, 白建辉, 等. 布里渊散射及其在激光雷达中的应用[J]. 物理, 2007, 36(10): 777-782.

    Shi J W, Gong W P, Bai J H, et al. Brillouin scattering and its application in LIDAR[J]. Physics, 2007, 36(10): 777-782.

[15] 史久林, 何兴道, 刘娟, 等. 水中受激布里渊散射阈值的研究[J]. 应用光学, 2009, 30(5): 869-873.

    Shi J L, He X D, Liu J, et al. Threshold study of stimulated Brillouin scattering in water[J]. Journal of Applied Optics, 2009, 30(5): 869-873.

[16] 梁琨, 马泳, 程飞, 等. 采用边缘探测技术的海表温度测量精度及误差分析[J]. 光电工程, 2008, 35(8): 92-96.

    Liang K, Ma Y, Cheng F, et al. Error analysis of measuring sea surface temperature based on brim detecting technology[J]. Opto-Electronic Engineering, 2008, 35(8): 92-96.

[17] 刘大禾, 汪华英, 周静. 布里渊散射法测量盐度及温度不同的海水中的声速[J]. 中国激光, 2000, 27(4): 381-384.

    Liu D H, Wang H Y, Zhou J. Measurements of sound speed in sea water with different salinity and temperature by Brillouin scattering method[J]. Chinese Journal of Lasers, 2000, 27(4): 381-384.

[18] 史久林. 基于受激布里渊散射的水体特征参数测量及相关基础研究[D]. 武汉:华中科技大学,2013.

    ShiJ L. Measurement of underwater parameters based on stimulated Brillouin scattering and related basic physics[D]. Wuhan: Huazhong University of Science and Technology,2013.

[19] 刘大禾, Katz J W. 水中布里渊散射的边缘探测方法[J]. 中国激光, 1999, 26(4): 307-311.

    Liu D H, Katz J W. Edge technique for the measurements of Brillouin scattering in water[J]. Chinese Journal of Lasers, 1999, 26(4): 307-311.

[20] 邓怀勇. 利用边缘技术探测进行激光布里渊散射雷达频移分析[J]. 舰船科学技术, 2019, 41(12): 115-117.

    Deng H Y. Frequency shift analysis of lidar Brillouin scattering radar using edge detection technology[J]. Ship Science and Technology, 2019, 41(12): 115-117.

[21] 杨飞, 陈迪俊, 潘政清, 等. 光纤光栅主动稳频的短直线腔单频光纤激光器[J]. 中国激光, 2012, 39(9): 24-29.

    Yang F, Chen D J, Pan Z Q, et al. Short linear cavity single-frequency fiber laser with active frequency stabilization by fiber Bragg grating[J]. Chinese Journal of Lasers, 2012, 39(9): 24-29.

[22] 毕德仓. 基于碘分子滤波器的激光锁相稳频装置和方法:CN104733996A[P]. 2015-06-24.

    BiD C. Laser phase locked frequency stabilization device and method based on iodine molecular filter: CN104733996A[P]. 2015-06-24.

[23] 王思杰, 隋永年. 黄海南部和东海北部海区盐度分布与变化状况的初步分析[J]. 海洋湖沼通报, 1985(4): 8-17.

    Wang S J, Sui Y N. A preliminary analysis of distribution features and variation situation of salinity in the southern of Huanghai Sea and northern of East China Sea[J]. Transaction of Oceanology and Limnology, 1985(4): 8-17.

[24] Reynolds O. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments,including an experimental determination of the viscosity of olive oil[J]. Philosophical Transactions of the Royal Society of London, 1886, 177: 157-234.

[25] He X D, Wei H J, Shi J L, et al. Experimental measurement of bulk viscosity of water based on stimulated Brillouin scattering[J]. Optics Communications, 2012, 285(20): 4120-4124.

杨馥, 陈唐嘉利, 陆彦宇, 陈文豪, 贺岩. 基于布里渊散射的海水参数测量反演算法研究[J]. 中国激光, 2022, 49(4): 0404001. Fu Yang, Tangjiali Chen, Yanyu Lu, Wenhao Chen, Yan He. Investigation on Inversion Algorithm of Seawater Parameters Measurement Based on Brillouin Scattering[J]. Chinese Journal of Lasers, 2022, 49(4): 0404001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!