发光学报, 2013, 34 (5): 535, 网络出版: 2013-05-22   

利用金属纳米颗粒改善有机光电器件性能

High-efficiency Organic Photoelectric Devices with Metal Nanoparticles
作者单位
集成光电子国家重点联合实验室 吉林大学 电子科学与工程学院, 吉林 长春130012
摘要
有机发光和有机光伏器件为代表的有机光电器件在显示、照明、能源等领域有着广阔的应用前景。有机发光器件具有发光效率高、发光颜色丰富、响应速度快等优点, 而有机光伏器件具有质轻、成本低、可实现柔性器件等优点。金属纳米颗粒的表面等离子体共振耦合效应可以提高有机发光器件的效率和有机光伏器件的光电转换效率, 因而得到了研究人员的广泛关注。本文综述了金属纳米颗粒改善有机发光/光伏器件性能方面的研究进展, 并对其今后的应用趋势进行了讨论。
Abstract
Organic photoelectric devices including organic light-emitting devices (OLEDs) and organic photovoltaic cells (OPVs), etc, have great potential applications in flat-panel display, solid-state lighting and energy. OLED is a promising technology for display due to its high efficiency, excellent color gamut and quick response. OPV has the advantages of light weight, low cost and flexibility. Surface plasmon resonance of metal nanoparticles could improve the efficiency of OLED and OPV. This paper reviewed the research progress of high-efficiency OLED/OPV with metal nanoparticles and discussed the prospective applications.
参考文献

[1] Tang C W. Two-layer organic photovoltaic cell [J]. Appl. Phys. Lett., 1986, 48(2):183-185.

[2] Tang C W, Van Slyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51(12):913-915.

[3] Muller C D, Reckefuss N, Rudati P, et al. Multi-color polymeric OLEDs by solution processing [J]. Org. Proc. Res. Dev., 2004, 5214:21-30.

[4] Schilinsky P, Waldauf C, Brabec C J. Performance analysis of printed bulk heterojunction solar cells [J]. Adv. Funct. Mater., 2006, 16(13):1669-1672.

[5] Kulkarni A P, Tonzola C J, Babel A, et al. Electron transport materials for organic light-emitting diodes [J]. Chem. Mater., 2004, 16(23):4556-4573.

[6] Pei Q B, Yu G, Zhang C, et al. Polymer light-emitting electrochemical cells [J]. Science,1995, 269(5227): 1086-1088.

[7] Aziz H, Popovic Z D, Hu N X, et al. Degradation mechanism of small molecule-based organic light-emitting devices [J]. Science, 1999, 283(5409):1900-1902.

[8] Yagi T, Satoh R, Yamada Y, et al. Organic light-emitting diodes with enhanced out-coulping efficiency using high-refractive-index glass frit [J]. J. Soc. Inf. Display, 2012, 20(9):526-532.

[9] Ji W Y, Zhang L T, Xie W F. Improving efficiency roll-off in phosphorescent OLEDs by modifying the exciton lifetime [J]. Opt. Lett., 2012, 37(11):2019-2021.

[10] Moller S, Forrest S R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays [J]. J. Appl. Phys., 2002, 91(5):3324-3327.

[11] Zhu J F, Xue M, Shen H J, et al. Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres [J]. Appl. Phys. A, 2011, 98(15):151110-1-5.

[12] Liu D A, Fina M, Ren L, et al. Enhanced luminance of organic light-emitting diodes with metal nanoparticle electron injection layer [J]. Appl. Phys. A, 2009, 96(2):353-356.

[13] Ni X M, Zhang J B, Zhang Y F, et al. Citrate-assisted synthesis of prickly nickel microwires and their surface modification with silver [J]. J. Colloid Interf. Sci., 2007, 307(2):554-558.

[14] Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface [J]. Anal. Chem., 2002, 74(3):504-509.

[15] Talley C E, Jackson J B, Oubre C, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates [J]. Nano Lett., 2005, 5(8):1569-1574.

[16] Thompson D G, Enright A, Faulds K, et al. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates [J]. Anal. Chem., 2008, 80(8):2805-2810.

[17] Alexiou C, Jurgons R, Schmid R, et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles [J]. J. Magn. Magn. Mater., 2005, 293(1):389-393.

[18] Fujiki A, Uemura T, Zettsu N, et al. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode [J]. Appl. Phys. Lett., 2011, 96(4):043307-1-3.

[19] Liu F, Nunzi J M. Noble metal nanoparticle enhanced organic light emitting diodes [J]. SPIE, 2012, 8424:84243-1-5.

[20] Zheng T H, Choy W C H, Sun Y X. Nanoparticle-induced resonant tunneling behaviors in small molecule organic light-emitting devices [J]. Appl. Phys. Lett., 2009, 94(12):123303-1-3.

[21] Tanaka T, Totoki Y, Fujiki A, et al. Enhanced red-light emission by local plasmon coupling of Au nanorods in an organic light-emitting diode [J]. Appl. Phys. Exp., 2011, 4(3):032105-1-5.

[22] Xiao Y, Yang J P, Cheng P P, et al. Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles [J]. Appl. Phys. Lett., 2012, 100(1):013308-1-3.

[23] Reil F, Gerber S, Krenn J R, et al. Comparing the influence of gold nanorods and -discs on the spontaneous decay rate of Eu-chelate dye [J]. J. Opt. A:Pure Appl. Opt., 2007, 9(9):S437-S442.

[24] Yang K Y, Choi K C, Ahn C W. Surface plasmon-enhanced energy transfer in an organic light-emitting device structure [J]. Opt. Exp., 2009,17(14):11495-11504.

[25] Liu F, Nunzi J M. Phosphorescent organic light emitting diode efficiency enhancement using functionalized silver nanoparticles [J]. Appl. Phys. Lett., 2011, 99(12):123302-1-3.

[26] Kumar A, Srivastava R, Tyagi P, et al. Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon [J]. Org. Electron., 2012, 13(1):159-165.

[27] Kumar A, Srivastava R, Mehta D S, et al. Surface plasmon enhanced blue organic light emitting diode with nearly 100% fluorescence efficiency [J]. Org. Electron., 2012, 13(9):1750-1755.

[28] Liu F, Rao B S, Nunzi J M. A dye functionalized silver-silica core-shell nanoparticle organic light emitting diode [J]. Org. Electron., 2011, 12(7):1279-1284.

[29] Zheng T H, Choy W C H, Ho C L, et al. Improving efficiency roll-off in organic light emitting devices with a fluorescence-interlayer-phosphorescence emission architecture [J]. Appl. Phys. Lett., 2009, 95(13):133304-1-3.

[30] Kim R S, Zhu J F, Park J H, et al. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model [J]. Opt. Exp., 2012, 20(12):12649-12657.

[31] Zhuang T J, Su Z S, Liu Y D, et al. Enhanced performance of small molecular weight organic solar cells by incorporating Ag nanoparticles [J]. Chin. J. Lumin.(发光学报), 2011, 32(12):1266-1270 (in Chinese).

[32] Liu F, Nunzi J M. Enhanced organic light emitting diode and solar cell performances using silver nano-clusters [J]. Org. Electron., 2012, 13(9):1623-1632.

[33] Wang S Y, Borca-Tasciuc D A, Kaminski D A. The effect of particle vertical positioning on the absorption enhancement in plasmonic organic solar cells [J]. J. Appl. Phys., 2012, 111(12):124301-1-5.

[34] Westphalen M, Kreibig U, Rostalski J. Metal cluster enhanced organic solar cells [J]. Sol. Energ. Mat. Sol. C, 2000,61(1):97-105.

谢文法, 徐凯, 李杨, 闻雪梅, 张乐天. 利用金属纳米颗粒改善有机光电器件性能[J]. 发光学报, 2013, 34(5): 535. XIE Wen-fa, XU Kai, LI Yang, WEN Xue-mei, ZHANG Le-tian. High-efficiency Organic Photoelectric Devices with Metal Nanoparticles[J]. Chinese Journal of Luminescence, 2013, 34(5): 535.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!