光学学报, 2016, 36 (10): 1026003, 网络出版: 2016-10-12   

基于空间光场调控技术的光学微操纵 下载: 2941次

Optical Micro-Manipulation Based on Spatial Modulation of Optical Fields
作者单位
中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室, 陕西 西安 710119
摘要
光镊技术具有无机械接触与高精度操纵微小尺度粒子的优点,自发明以来已逐渐成为生命科学和胶体物理学等领域中强有力的研究工具。随着研究的深入,传统的单光阱光镊已难以满足更高级的应用需求。近年来,空间光场调控技术通过对光场的振幅、相位和偏振态分布的调制,极大地丰富和增强了光学微操纵技术的功能,促进了包括激光微纳加工、微粒分选与输运、胶体粒子物理特性研究等方面的发展。从光场的振幅、相位和偏振态调制技术出发,综述近年来空间光场调控技术的发展及其在光学微操纵中的应用,重点介绍全息光镊、特殊模式光束微操纵、矢量光场微操纵等光学微操纵技术的研究进展。
Abstract
Optical tweezers has become a powerful tool for research in life science and colloidal physics since its invention due to its advantages of mechanical contact-free and high-precision manipulation of micro-sized particles. However, the conventional single-trap optical tweezers is limited in the increasing demands of research. In recent years, the technique of spatial modulation of optical fields, which modulates the amplitude, phase and polarization state of light, has extensively enhanced the function of optical micro-manipulation, and promoted the advance in laser micro/nano fabricaton, optical sorting and transportation of micro-particles, and colloidal particles studies. The advance in spatial modulation of optical fields to date and their applications in optical micro-manipulation is reviewed, including the holographic optical tweezers, special-mode optical beams manipulation, and vector beams manipulation.
参考文献

[1] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Phys Rev Lett, 1970, 24(4): 156-159.

[2] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett, 1986, 11(5): 288-290.

[3] Marago O, Jones P, Bonaccorso F, et al. Femtonewton force sensing with optically trapped nanotubes[J]. Nano Lett, 2008, 8(10): 3211-3216.

[4] Svoboda K, Block S M. Biological applications of optical forces[J]. Annu Rev, 1994, 23: 247-285.

[5] Veigel C, Schmidt C F. Moving into the cell: Single-molecule studies of molecular motors in complex environments[J]. Nat Rev Mol Cell Biol, 2011, 12(3): 163-176.

[6] Crocker J C, Matteo J A, Dinsmore A D, et al. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer[J]. Phys Rev Lett, 1999, 82(21): 4352-4355.

[7] Metzger N K, Dholakia K, Wright E M. Observation of bistability and hysteresis in optical binding of two dielectric spheres[J]. Phys Rev Lett, 2006, 96(6): 068102.

[8] Chuu C S, Strassel T, Zhao B, et al. Quantum memory with optically trapped atoms[J]. Phys Rev Lett, 2008, 101(12): 120501.

[9] Muldoon C, Brandt L, Dong J, et al. Control and manipulation of cold atoms in optical tweezers[J]. New J Phys, 2012, 14(7): 073051.

[10] MacDonald M, Spalding G, Dholakia K. Microfluidic sorting in an optical lattice[J]. Nature, 2003, 426(6965): 421-424.

[11] Visscher K, Gross S P, Block S M. Construction of multiple-beam optical traps with nanometer-resolution position sensing[J]. IEEE J Sel Top Quant, 1996, 2(4): 1066-1076.

[12] Dufresne E R, Grier D G. Optical tweezer arrays and optical substrates created with diffractive optics[J]. Rev Sci Instrum, 1998, 69(5): 1974-1977.

[13] Dufresne E R, Spalding G C, Dearing M T, et al. Computer-generated holographic optical tweezer arrays[J]. Rev Sci Instrum, 2001, 73(2): 1810-1816.

[14] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Opt Commun, 2002, 207: 169-175.

[15] Roichman Y, Sun B, Roichman Y, et al. Optical forces arising from phase gradients[J]. Phys Rev Lett, 2008, 100(1): 013602.

[16] Dutra R S, Viana N B, Neto P A M, et al. Polarization effects in optical tweezers[J]. J Opt A: Pure Appl Opt, 2007, 9(8): S221.

[17] Wang X L, Chen J, Li Y, et al. Optical orbital angular momentum from the curl of polarization[J]. Phys Rev Lett, 2010, 105(25): 253602.

[18] Guo C S, Yu Y N, Hong Z. Optical sorting using an array of optical vortices with fractional topological charge[J]. Opt Commun, 2010, 283(9): 1889-1893.

[19] imár T, Garcés-Chávez V, Dholakia K, et al. Optical conveyor belt for delivery of submicron objects[J]. Appl Phys Lett, 2005, 86(17): 174101.

[20] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt Express, 2000, 7(2): 77-87.

[21] Michihata M, Hayashi T, Takaya Y. Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam[J]. Appl Opt, 2009, 48(32): 6143-6151.

[22] Huang L, Guo H, Li J, et al. Optical trapping of gold nanoparticles by cylindrical vector beam[J]. Opt Lett, 2012, 37(10): 1694-1696.

[23] Yu X, Yao B, Lei M, et al. Polarization-sensitive diffractive optical elements fabricated in BR films with femtosecond laser[J]. Appl Phys B, 2014, 115(3): 365-369.

[24] Ren H, Li X, Gu M. Polarization-multiplexed multifocal arrays by a pi-phase-step-modulated azimuthally polarized beam[J]. Opt Lett, 2014, 39(24): 6771-6774.

[25] Allegre O J, Jin Y, Perrie W, et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing[J]. Opt Express, 2013, 21(18): 21198-21207.

[26] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

[27] Auyeung R C Y, Kim H, Charipar N A, et al. Laser forward transfer based on a spatial light modulator[J]. Appl Phys A, 2010, 102(1): 21-26.

[28] Lutz C, Otis T S, DeSars V, et al. Holographic photolysis of caged neurotransmitters[J]. Nat Methods, 2008, 5(9): 821-827.

[29] Liesener J, Reicherter M, Haist T, et al. Multi-functional optical tweezers using computer-generated holograms[J]. Opt Commun, 2000, 185(1): 77-82.

[30] Montes-Usategui M, Pleguezuelos E, Andilla J, et al. Fast generation of holographic optical tweezers by random mask encoding of Fourier components[J]. Opt Express, 2006, 14(6): 2101-2107.

[31] Meister M, Winfield R J. Novel approaches to direct search algorithms for the design of diffractive optical elements[J]. Opt Commun, 2002, 203: 39-49.

[32] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237-246.

[33] Rinne J W, Wiltzius P. Design of holographic structures using genetic algorithms[J]. Opt Express, 2006, 14(21): 9909-9916.

[34] 孙晴, 任煜轩, 姚焜, 等. 阵列光镊衍射元件的算法设计[J]. 中国激光, 2011, 38(1): 0109003.

    Sun Qing, Ren Yuxuan, Yao Kun, et al. Algorithm for diffractive optical element of array optical tweezers[J]. Chinese J Lasers, 2011, 38(1): 0109003.

[35] 徐淑武, 周巧巧, 顾宋博, 等. 用空间光调制器产生三维光阱阵列[J]. 物理学报, 2012, 61(22): 223702-223702.

    Xu Shuwu, Zhou Qiaoqiao, Gu Songbo, et al. Generation of the three-dimensional array of optical trap by spatial light modulator[J]. Acta Physica Sinica, 2012, 61(22): 223702-223702.

[36] Jesacher A, Maurer C, Schwaighofer A, et al. Full phase and amplitude control of holographic optical tweezers with high efficiency[J]. Opt Express, 2008, 16(7): 4479-4486.

[37] Goorden S A, Bertolotti J, Mosk A P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device[J]. Opt Express, 2014, 22(15): 17999-18009.

[38] Davis J A, Cottrell D M, Campos J, et al. Encoding amplitude information onto phase-only filters[J]. Appl Opt, 1999, 38(23): 5004-5013.

[39] Arrizón V, Ruiz U, Carrada R, et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields[J]. J Opt Soc Am A, 2007, 24(11): 3500.

[40] Mendoza-Yero O, Minguez-Vega G, Lancis J. Encoding complex fields by using aphase-only optical element[J]. Opt Lett, 2014, 39(7): 1740-1743.

[41] Wu L, Cheng S, Tao S. Simultaneous shaping of amplitude and phase of light in the entire output plane with a phase-only hologram[J]. Sci Rep, 2015, 5: 15426.

[42] Zuchner T, Failla A V, Meixner A J. Light microscopy with doughnut modes: A concept to detect, characterize, and manipulate individual nanoobjects[J]. Angew Chem Int Ed, 2011, 50(23): 5274-5293.

[43] Liang Y, Yan S, Yao B, et al. Generation of cylindrical vector beams based on common-path interferometer with a vortex phase plate[J]. Opt Eng, 2016, 55(4): 046117.

[44] Maurer C, Jesacher A, Fürhapter S, et al. Tailoring of arbitrary optical vector beams[J]. New J Phys, 2007, 9(3): 78.

[45] Kenny F, Lara D, Rodríguez-Herrera O G, et al. Complete polarization and phase control for focus-shaping in high-NA microscopy[J]. Opt Express, 2012, 20(13): 14015-14029.

[46] Liu S, Li P, Peng T, et al. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer[J]. Opt Express, 2012, 20(19): 21715-21721.

[47] Chen H, Hao J, Zhang B F, et al. Generation of vector beam with space-variant distribution of both polarization and phase[J]. Opt Lett, 2011, 36(16): 3179-3181.

[48] Lin D, Xia K, Li R, et al. Radially polarized and passively Q-switched fiber laser[J]. Opt Lett, 2010, 35(21): 3574-3576.

[49] Beresna M, Geceviius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Appl Phys Lett, 2011, 98(20): 201101.

[50] Viswanathan N K, Inavalli V V G K. Generation of optical vector beams using a two-mode fiber[J]. Opt Lett, 2009, 34(8): 1189-1191.

[51] Han W, Yang Y, Cheng W, et al. Vectorial optical field generator for the creation of arbitrarily complex fields[J]. Opt Express, 2013, 21(18): 20692-20706.

[52] Tao T, Li J, Long Q, et al. 3D trapping and manipulation of micro-particles using holographic optical tweezers with optimized computer-generated holograms[J]. Chin Opt Lett, 2011, 9(12): 120010-120013.

[53] Tao S H, Yuan X C, Niu H B, et al. Dynamic optical manipulation using intensity patterns directly projected by a reflective spatial light modulator[J]. Rev Sci Instrum, 2005, 76(5): 056103(1)-056103(3).

[54] Chen H, Guo Y, Chen Z, et al. Holographic optical tweezers obtained by using the three-dimensional Gerchberg-Saxton algorithm[J]. J Opt, 2013, 15(3): 035401.

[55] 梁言生, 姚保利, 马百恒, 等. 基于纯相位液晶空间光调制器的全息光学捕获与微操纵[J]. 光学学报, 2016, 36(3): 0309001.

    Liang Yansheng, Yao Baoli, Ma Baiheng, et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator[J]. Acta Optica Sinica, 2016, 36(3): 0309001.

[56] Zhu L, Wang J. Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators[J]. Sci Rep, 2014, 4: 7441.

[57] Lee S H, Roichman Y, Grier D G. Optical solenoid beams[J]. Opt Express, 2010, 18(7): 6988-6993.

[58] Rodrigo J A, Alieva T, Abramochkin E, et al. Shaping of light beams along curves in three dimensions[J]. Opt Express, 2013, 21(18): 20544-20555.

[59] Rodrigo J A, Alieva T. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond[J]. Optica, 2015, 2(9): 812.

[60] Heckenberg N R, McDuff R, Smith C P, et al. Laser beams with phase singularities[J]. Opt Quant Electron, 1992, 24: S951-S962.

[61] Chattrapiban N, Rogers E A, Cofield D, et al. Generation of nondiffracting Bessel beams by use of a spatial light modulator[J]. Opt Lett, 2003, 28(22): 2183-2185.

[62] 于湘华, 姚保利, 雷铭, 等. 无衍射特殊模式光束的产生与三维表征物理学报[J]. 物理学报, 2015, 64(24): 244203.

    Yu Xianghua, Yao Baoli, Lei Ming, et al. Generation and three-dimensional characterization of complex nondiffracting optical beams[J]. Acta Physica Sinica, 2015, 64(24): 244203.

[63] Yu X, Li R, Yan S, et al. Experimental demonstration of 3D accelerating beam arrays[J]. Appl Opt, 2016, 55(11): 3090-3095.

[64] Vettenburg T, Dalgarno H I, Nylk J, et al. Light-sheet microscopy using an Airy beam[J]. Nat Methods, 2014, 11(5): 541-544.

[65] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185-8189.

[66] Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Opt Lett, 1997, 22(1): 52-54.

[67] Gahagan K, Swartzlander G. Optical vortex trapping of particles[J]. Opt Lett, 1996, 21(11): 827-829.

[68] Dienerowitz M, Mazilu M, Reece P J, et al. Optical vortex trap for resonant confinement of metal nanoparticles[J]. Opt Express, 2008, 16(7): 4991-4999.

[69] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the “perfect” optical vortex using aliquid-crystal spatial light modulator[J]. Opt Lett, 2013, 38(4): 534-536.

[70] Chen M, Mazilu M, Arita Y, et al. Dynamics of microparticles trapped in a perfect vortex beam[J]. Opt Lett, 2013, 38(22): 4919-4922.

[71] Tao S, Yuan X C, Lin J, et al. Fractional optical vortex beam induced rotation of particles[J]. Opt Express, 2005, 13(20): 7726-7731.

[72] Garces-Chavez V, McGloin D, Melville H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 2002, 419(6903): 145-147.

[73] Carruthers A E, Walker J S, Casey A, et al. Selection and characterization of aerosol particle size using a bessel beam optical trap for single particle analysis[J]. Phys Chem Chem Phys, 2012, 14(19): 6741-6748.

[74] Karásek V, imár T, Brzobohaty' O, et al. Long-range one-dimensional longitudinal optical binding[J]. Phys Rev Lett, 2008, 101(14): 143601.

[75] Sukhov S, Dogariu A. On the concept of “tractor beams”[J]. Opt Lett, 2010, 35(22): 3847-3849.

[76] Chen J, Ng J, Lin Z, et al. Optical pulling force[J]. Nat Photonics, 2011, 5(9): 531-534.

[77] Sáenz J J. Optical forces: Laser tractor beams[J]. Nat Photonics, 2011, 5(9): 514-515.

[78] Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams[J]. Opt Lett, 2008, 33(3): 207-209.

[79] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets[J]. Nat Photonics, 2008, 2(11): 675-678.

[80] Baumgartl J, Hannappel G M, Stevenson D J, et al. Optical redistribution of microparticles and cells between microwells[J]. Lab Chip, 2009, 9(10): 1334-1336.

[81] Baumgartl J, imár T, Mazilu M, et al. Optical path clearing and enhanced transmission through colloidal suspensions[J]. Opt Express, 2010, 18(16): 17130-17140.

[82] Zhang P, Prakash J, Zhang Z, et al. Trapping and guiding microparticles with morphing autofocusing Airy beams[J]. Opt Lett, 2011, 36(15): 2883-2885.

[83] 张泽, 刘京郊, 张鹏, 等. 多艾里光束合成自聚焦光束的实验实现[J]. 物理学报, 2013, 62: 034209.

    Zhang Ze, Liu Jingjiao, Zhang Peng, et al. Generation of autofocusing beams with multi-Airy beams[J]. Acta Physica Sinica, 2013, 62: 034209.

[84] Zhao J, Chremmos I D, Song D, et al. Curved singular beams for three-dimensional particle manipulation[J]. Sci Rep, 2015, 5: 12086.

[85] Yan S, Yao B. Radiation forces of a highly focused radially polarized beam on spherical particles[J]. Phys Rev A, 2007, 76(5): 053836.

[86] Peng F, Yao B, Yan S, et al. Trapping of low-refractive-index particles with azimuthally polarized beam[J]. J Opt Soc Am B, 2009, 26(12): 2242-2247.

[87] Shvedov V, Davoyan A R, Hnatovsky C, et al. A long-range polarization-controlled optical tractor beam[J]. Nat Photonics, 2014, 8(11): 846-850.

[88] Xu H F, Zhang W J, Qu J, et al. Improving the trapping capability using radially polarized narrow-width annular beam[J]. J Mod Opt, 2014, 63(5): 1-6.

[89] Yao B L, Yan S H, Ye T, et al. Optical trapping of double-ring radially polarized beam with improved axial trapping efficiency[J]. Chin Phys Lett, 2010, 27(10): 108701.

[90] Li M, Yan S, Yao B, et al. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization[J]. Phys Lett A, 2016, 380(1): 311-315.

[91] Preece D, Keen S, Botvinick E, et al. Independent polarisation control of multiple optical traps[J]. Opt Express, 2008, 16(20): 15897-15902.

梁言生, 姚保利, 雷铭, 严绍辉, 于湘华, 李曼曼. 基于空间光场调控技术的光学微操纵[J]. 光学学报, 2016, 36(10): 1026003. Liang Yansheng, Yao Baoli, Lei Ming, Yan Shaohui, Yu Xianghua, Li Manman. Optical Micro-Manipulation Based on Spatial Modulation of Optical Fields[J]. Acta Optica Sinica, 2016, 36(10): 1026003.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!