Frontiers of Optoelectronics, 2015, 8 (4): 379, 网络出版: 2016-01-06  

Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution

Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution
作者单位
Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
摘要
Studying the activity of individual nanocata-lysts, especially with high spatiotemporal resolution of single-molecule and single-turnover scale, is essential for the understanding of catalytic mechanism and the design-ing of effective catalysts. Several approaches have been developed to monitor the catalytic reaction on single catalysts. In this review, we summarized the updated progresses of several new spectroscopic and microscopic approaches, including single-molecule .uorescence micro-scopy, surface-enhanced Raman spectroscopy, surface plasmon resonance microscopy and X-ray microscopy, for the study of single-molecule and single-particle catalysis.
Abstract
Studying the activity of individual nanocata-lysts, especially with high spatiotemporal resolution of single-molecule and single-turnover scale, is essential for the understanding of catalytic mechanism and the design-ing of effective catalysts. Several approaches have been developed to monitor the catalytic reaction on single catalysts. In this review, we summarized the updated progresses of several new spectroscopic and microscopic approaches, including single-molecule .uorescence micro-scopy, surface-enhanced Raman spectroscopy, surface plasmon resonance microscopy and X-ray microscopy, for the study of single-molecule and single-particle catalysis.
参考文献

[1] Bell A T. The impact of nanoscience on heterogeneous catalysis. Science, 2003, 299(5613): 1688–1691

[2] Weckhuysen B M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angewandte Chemie International Edition, 2009, 48(27): 4910–4943

[3] Weckhuysen B M. Preface: recent advances in the in-situ characterization of heterogeneous catalysts. Chemical Society Reviews, 2010, 39(12): 4557–4559

[4] Buurmans I L C, Weckhuysen B M. Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy. Nature Chemistry, 2012, 4(11): 873–886

[5] Cordes T, Blum S A. Opportunities and challenges in singlemolecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nature Chemistry, 2013, 5(12): 993–999

[6] Wang W, Tao N. Detection, counting, and imaging of single nanoparticles. Analytical Chemistry, 2014, 86(1): 2–14

[7] Gellman A J, Shukla N. Nanocatalysis: more than speed. Nature Materials, 2009, 8(2): 87–88

[8] Murzin D Y. Nanokinetics for nanocatalysis. Catalysis Science & Technology, 2011, 1(3): 380–384

[9] Zhang S, Nguyen L, Zhu Y, Zhan S, Tsung C K, Tao F F. In-situ studies of nanocatalysis. Accounts of Chemical Research, 2013, 46 (8): 1731–1739

[10] Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325

[11] Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics Angewandte Chemie International Edition, 2009, 48(1): 60–103

[12] Langille M R, Personick M L, Zhang J, Mirkin C A. Defining rules for the shape evolution of gold nanoparticles. Journal of the American Chemical Society, 2012, 134(35): 14542–14554

[13] Cox J T, Zhang B. Nanoelectrodes: recent advances and new directions. Annual Review of Analytical Chemistry, 2012, 5(1): 253–272

[14] Ebejer N, Güell A G, Lai S C S, McKelvey K, Snowden M E, Unwin P R. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annual Review of Analytical Chemistry, 2013, 6(1): 329–351

[15] Lu H P, Xun L, Xie X S. Single-molecule enzymatic dynamics. Science, 1998, 282(5395): 1877–1882

[16] Edman L, Foldes-Papp Z, Wennmalm S, Rigler R. The fluctuating enzyme: a single molecule approach. Chemical Physics, 1999, 247 (1): 11–22

[17] PaigeMF, Fromm D P, MoernerWE. Biomolecular applications of single-molecule measurements: kinetics and dynamics of a single enzyme reaction. Proceedings-Society of Photo-Optical Instrumentation Engineers, 2002, 4634: 92–103

[18] Velonia K, Flomenbom O, Loos D, Masuo S, Cotlet M, Engelborghs Y, Hofkens J, Rowan A E, Klafter J, Nolte R J M, de Schryver F C. Single-enzyme kinetics of CALB-catalyzed hydrolysis. Angewandte Chemie International Edition, 2005, 44(4): 560–564

[19] English B P, Min W, van Oijen A M, Lee K T, Luo G, Sun H, Cherayil B J, Kou S C, Xie X S. Ever-fluctuating single enzyme molecules: Michaelis-Menten equation revisited. Nature Chemical Biology, 2006, 2(2): 87–94

[20] Smiley R D, Hammes G G. Single molecule studies of enzyme mechanisms. Chemical Reviews, 2006, 106(8): 3080–3094

[21] Roeffaers M B J, Sels B F, Uji-I H, de Schryver F C, Jacobs P A, de Vos D E, Hofkens J. Spatially resolved observation of crystal-facedependent catalysis by single turnover counting. Nature, 2006, 439 (7076): 572–575

[22] Naito K, Tachikawa T, Fujitsuka M, Majima T. Real-time singlemolecule imaging of the spatial and temporal distribution of reactive oxygen species with fluorescent probes: Applications to TiO2 photocatalysts. Journal of Physical Chemistry C, 2008, 112(4): 1048–1059

[23] Xu W, Kong J S, Yeh Y T E, Chen P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nature Materials, 2008, 7(12): 992–996

[24] Janssen K P F, de Cremer G, Neely R K, Kubarev A V, Van Loon J, Martens J A, de Vos D E, Roeffaers M B J, Hofkens J. Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chemical Society Reviews, 2014, 43(4): 990–1006

[25] Chen P, Zhou X, Andoy N M, Han K S, Choudhary E, Zou N, Chen G, Shen H. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chemical Society Reviews, 2014, 43(4): 1107–1117

[26] Tachikawa T, Majima T. Single-molecule, single-particle approaches for exploring the structure and kinetics of nanocatalysts. Langmuir, 2012, 28(24): 8933–8943

[27] Chen P, Xu W L, Zhou X C, Panda D, Kalininskiy A. Singlenanoparticle catalysis at single-turnover resolution. Chemical Physics Letters, 2009, 470(4–6): 151–157

[28] Xu W, Kong J S, Chen P. Probing the catalytic activity and heterogeneity of Au-nanoparticles at the single-molecule level. Physical Chemistry Chemical Physics, 2009, 11(15): 2767–2778

[29] Zhou X, Xu W, Liu G, Panda D, Chen P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. Journal of the American Chemical Society, 2010, 132(1): 138–146

[30] Chen P, Zhou X, Shen H, Andoy N M, Choudhary E, Han K S, Liu G, Meng W. Single-molecule fluorescence imaging of nanocatalytic processes. Chemical Society Reviews, 2010, 39(12): 4560–4570

[31] Xu W, Shen H, Kim Y J, Zhou X, Liu G, Park J, Chen P. Singlemolecule electrocatalysis by single-walled carbon nanotubes. Nano Letters, 2009, 9(12): 3968–3973

[32] Han K S, Liu G, Zhou X, Medina R E, Chen P. How does a single Pt nanocatalyst behave in two different reactions A single-molecule study. Nano Letters, 2012, 12(3): 1253–1259

[33] Xu W, Jain P K, Beberwyck B J, Alivisatos A P. Probing redox photocatalysis of trapped electrons and holes on single Sb-doped titania nanorod surfaces. Journal of the American Chemical Society, 2012, 134(9): 3946–3949

[34] Zhou X, Andoy N M, Liu G, Choudhary E, Han K S, Shen H, Chen P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nature Nanotechnology, 2012, 7 (4): 237–241

[35] Andoy NM, Zhou X, Choudhary E, Shen H, Liu G, Chen P. Singlemolecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. Journal of the American Chemical Society, 2013, 135(5): 1845–1852

[36] Zhou X C, Choudhary E, Andoy N M, Zou N M, Chen P. Scalable parallel screening of catalyst activity at the single-particle level and subdiffraction resolution. Acs Catalysis, 2013, 3(7): 1448–1453

[37] Tachikawa T, Yamashita S, Majima T. Evidence for crystal-facedependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. Journal of the American Chemical Society, 2011, 133(18): 7197–7204

[38] Bian Z F, Tachikawa T, Kim W, Choi W, Majima T. Superior electron transport and photocatalytic abilities of metal-nanoparticleloaded TiO2 superstructures. Journal of Physical Chemistry C, 2012, 116(48): 25444–25453

[39] Wang N, Tachikawa T, Majima T. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chemical Science, 2011, 2(5): 891–900

[40] Tachikawa T, Yonezawa T, Majima T. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes. ACS Nano, 2013, 7(1): 263–275

[41] Roeffaers M B J, de Cremer G, Libeert J, Ameloot R, Dedecker P, Bons A J, Bückins M, Martens J A, Sels B F, de Vos D E, Hofkens J. Super-resolution reactivity mapping of nanostructured catalyst particles. Angewandte Chemie International Edition, 2009, 48(49): 9285–9289

[42] de Cremer G, Roeffaers M B J, Bartholomeeusen E, Lin K, Dedecker P, Pescarmona P P, Jacobs P A, de Vos D E, Hofkens J, Sels B F. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angewandte Chemie International Edition, 2010, 49(5): 908–911

[43] Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102–1106

[44] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997, 78(9): 1667– 1670

[45] Brus L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Accounts of Chemical Research, 2008, 41(12): 1742–1749

[46] Stiles P L, Dieringer J A, Shah N C, Van Duyne R P. Surfaceenhanced Raman spectroscopy. Annual Review of Analytical Chemistry, 2008, 1(1): 601–626

[47] Sonntag M D, Klingsporn J M, Zrimsek A B, Sharma B, Ruvuna L K, Van Duyne R P. Molecular plasmonics for nanoscale spectroscopy. Chemical Society Reviews, 2014, 43(4): 1230–1247

[48] Bailo E, Deckert V. Tip-enhanced Raman scattering. Chemical Society Reviews, 2008, 37(5): 921–930

[49] Pettinger B. Single-molecule surface- and tip-enhanced Raman spectroscopy. Molecular Physics, 2010, 108(16): 2039–2059

[50] Kim H, Kosuda K M, Van Duyne R P, Stair P C. Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions. Chemical Society Reviews, 2010, 39(12): 4820–4844

[51] Sonntag MD, Klingsporn J M, Garibay L K, Roberts JM, Dieringer J A, Seideman T, Scheidt K A, Jensen L, Schatz G C, Van Duyne R P. Single-molecule tip-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2012, 116(1): 478–483

[52] Kang L, Xu P, Zhang B, Tsai H, Han X, Wang H L. Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chemical Communications, 2013, 49(33): 3389–3391

[53] Kang L L, Xu P, Chen D T, Zhang B, Du Y C, Han X J, Li Q,Wang H L. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(19): 10007–10012

[54] Xu P, Kang L, Mack N H, Schanze K S, Han X, Wang H L. Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific Reports, 2013, 3: 2997

[55] van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J G, Deckert V, Weckhuysen B M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nature Nanotechnology, 2012, 7(9): 583–586

[56] Sun M, Zhang Z, Zheng H, Xu H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Scientific Reports, 2012, 2: 647

[57] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry, 2007, 58(1): 267–297

[58] Henry A I, Bingham J M, Ringe E, Marks L D, Schatz G C, Van Duyne R P. Correlated structure and optical property studies of plasmonic nanoparticles. Journal of Physical Chemistry C, 2011, 115(19): 9291–9305

[59] Ringe E, Sharma B, Henry A I, Marks L D, Van Duyne R P. Single nanoparticle plasmonics. Physical Chemistry Chemical Physics, 2013, 15(12): 4110–4129

[60] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing with plasmonic nanosensors. Nature Materials, 2008, 7(6): 442–453

[61] Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G. Nanostructured plasmonic sensors. Chemical Reviews, 2008, 108(2): 494–521

[62] Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W,Wen Y, He Y, Huang Q, Long Y T, Fan C. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angewandte Chemie International Edition, 2011, 50(50): 11994–11998

[63] Liu Q, Jing C, Zheng X, Gu Z, Li D, Li D W, Huang Q, Long Y T, Fan C. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles. Chemical Communications, 2012, 48(77): 9574–9576

[64] Shi L, Jing C, Ma W, Li D W, Halls J E, Marken F, Long Y T. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angewandte Chemie International Edition, 2013, 52(23): 6011–6014

[65] Li K, Qin W, Li F, Zhao X, Jiang B, Wang K, Deng S, Fan C, Li D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angewandte Chemie International Edition, 2013, 52(44): 11542–11545

[66] Langhammer C, Larsson E M. Nanoplasmonic in situ spectroscopy for catalysis applications. Acs Catalysis, 2012, 2(9): 2036–2045

[67] Novo C, Funston A M, Mulvaney P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotechnology, 2008, 3(10): 598–602

[68] Herrmann L O, Baumberg J J. Watching single nanoparticles grow in real time through supercontinuum spectroscopy. Small, 2013, 9 (22): 3743–3747

[69] Eo M, Baek J, Song H D, Lee S, Yi J. Quantification of electron transfer rates of different facets on single gold nanoparticles during catalytic reactions. Chemical Communications, 2013, 49(45): 5204– 5206

[70] Larsson E M, Langhammer C, Zori I, Kasemo B. Nanoplasmonic probes of catalytic reactions. Science, 2009, 326(5956): 1091–1094

[71] Langhammer C, Larsson E M, Kasemo B, Zori I. Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nanocalorimetry. Nano Letters, 2010, 10(9): 3529–3538

[72] Liu N, Tang M L, Hentschel M, Giessen H, Alivisatos A P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nature Materials, 2011, 10(8): 631–636

[73] Tang M L, Liu N, Dionne J A, Alivisatos A P. Observations of shape-dependent hydrogen uptake trajectories from single nanocrystals. Journal of the American Chemical Society, 2011, 133(34): 13220–13223

[74] Seo D, Park G, Song H. Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. Journal of the American Chemical Society, 2012, 134(2): 1221–1227

[75] Tittl A, Yin X, Giessen H, Tian X D, Tian Z Q, Kremers C, Chigrin D N, Liu N. Plasmonic smart dust for probing local chemical reactions. Nano Letters, 2013, 13(4): 1816–1821

[76] Shan X, Patel U, Wang S, Iglesias R, Tao N. Imaging local electrochemical current via surface plasmon resonance. Science, 2010, 327(5971): 1363–1366

[77] Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, Li J, Tao N. Imaging the electrocatalytic activity of single nanoparticles. Nature Nanotechnology, 2012, 7 (10): 668–672

[78] Frenkel A I, Rodriguez J A, Chen J G G. Synchrotron techniques for in situ catalytic studies: capabilities, challenges, and opportunities. Acs Catalysis, 2012, 2(11): 2269–2280

[79] Bordiga S, Groppo E, Agostini G, van Bokhoven J A, Lamberti C. Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chemical Reviews, 2013, 113(3): 1736–1850

[80] Beale AM, Jacques S D M,Weckhuysen BM. Chemical imaging of catalytic solids with synchrotron radiation. Chemical Society Reviews, 2010, 39(12): 4656–4672

[81] de Smit E, Swart I, Creemer J F, Hoveling G H, Gilles M K, Tyliszczak T, Kooyman P J, Zandbergen H W, Morin C, Weckhuysen B M, de Groot F M F. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy. Nature, 2008, 456(7219): 222–225

[82] Tada M, Ishiguro N, Uruga T, Tanida H, Terada Y, Nagamatsu S, Iwasawa Y, Ohkoshi S. μ-XAFS of a single particle of a practical NiOx/Ce2Zr2Oy catalyst. Physical Chemistry Chemical Physics, 2011, 13(33): 14910–14913

[83] Chao W, Fischer P, Tyliszczak T, Rekawa S, Anderson E, Naulleau P. Real space soft X-ray imaging at 10 nm spatial resolution. Optics Express, 2012, 20(9): 9777–9783

[84] Hell S W. Toward fluorescence nanoscopy. Nature Biotechnology, 2003, 21(11): 1347–1355

[85] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 2006, 91(11): 4258–4272

[86] Huang B, Wang W, Bates M, Zhuang X. Three-dimensional superresolution imaging by stochastic optical reconstruction microscopy. Science, 2008, 319(5864): 810–813

[87] Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature, 2005, 435(7046): 1210–1213

[88] Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F. High-resolution scanning X-ray diffraction microscopy. Science, 2008, 321(5887): 379–382

Kun LI, Weiwei QIN, Yan XU, Tianhuan PENG, Di LI. Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution[J]. Frontiers of Optoelectronics, 2015, 8(4): 379. Kun LI, Weiwei QIN, Yan XU, Tianhuan PENG, Di LI. Optical approaches in study of nanocatalysis with single-molecule and single-particle resolution[J]. Frontiers of Optoelectronics, 2015, 8(4): 379.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!