激光与光电子学进展, 2018, 55 (7): 073001, 网络出版: 2018-07-20  

复杂颗粒状物质中微量元素的LIBS稳定性研究 下载: 639次

Stability of Laser-Induced Breakdown Spectroscopy from Microelements in Complex Granular Matters
作者单位
1 中国科学院近代物理研究所, 甘肃 兰州 730000
2 中国科学院大学, 北京 100049
3 西北师范大学物理与电子工程学院, 甘肃 兰州 730070
摘要
以具有复杂颗粒特征的商业食盐为模型样品,通过实验研究了激光诱导击穿光谱(LIBS)技术检测复杂颗粒状物质中微量元素光谱的稳定性。通过测量和分析食盐中Ca(800×10-6)、Sr(35.1×10-6)、Mg(6.4×10-6)、Fe(1.7×10-6)微量元素在250~465 nm波段的发射谱线强度、相对标准偏差和信噪比随距焦量、激光脉冲累加次数和光谱采集延迟时间的变化规律,确定了采集微量元素对应分析谱线的最优实验条件。基于优化的实验条件,采集食盐颗粒中4种微量元素的LIBS稳定性分别优于10%、14%、13%和28%。这表明LIBS技术具备检测食盐颗粒中质量分数为10-6量级元素的能力,为LIBS技术在线定量分析复杂颗粒形态物质中微量元素的工业应用提供了实验依据。
Abstract
Taking the commercial salt as a model sample of granular matters with complex size and component distribution, we study the stability of laser-induced breakdown spectroscopy (LIBS) from microelements in complex granular matters. We measure the intensities of emission spectral lines, relative standard deviation and signal to noise ratio from four typical microelements (Ca with mass fraction of 800×10-6, Sr with mass fraction of 35.1×10-6, Mg with mass fraction of 6.4×10-6, and Fe with mass fraction of 1.7×10-6) in the salt sample in the band from 250 nn to 465 nm to determine the most optimal experimental conditions for synchronously detecting the four microelements. Based on these optimal conditions, we quantitatively obtained that the LIBS stability of the four microelements is above 10%, 14%, 13% and 28%, respectively. This indicates that LIBS technology has the ability to detect microelement with mass fraction of 10-6 in salt, providing experimental references for the detection of microelements in complex granular matters using LIBS in on-line industrial processes.
参考文献

[1] Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields[J]. Applied Spectroscopy, 2012, 66(4): 347-419.

[2] El Haddad J, Canioni L, Bousquet B. Good practices in LIBS analysis: review and advices[J]. Spectrochimica Acta Part B, 2014, 101: 171-182.

[3] Mohamed W T Y. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera[J]. Optics and Laser Technology, 2008, 40(1): 30-38.

[4] 张大成, 马新文, 朱小龙, 等. 激光诱导击穿光谱应用于三种水果样品微量元素的分析[J]. 物理学报, 2008, 57(10): 6348-6353.

    Zhang D C, Ma X W, Zhu X L, et al. Application of laser-induced breakdown spectroscopy in analyzing microelements in three kinds of fruit samples[J]. Acta Physica Sinica, 2008, 57(10): 6348-6353.

[5] Register J, Scaffidi J, Angel S M. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS)[J]. Applied Spectroscopy, 2012, 66(8): 869-874.

[6] 张颖, 张大成, 马新文, 等. 基于激光诱导击穿光谱技术定量分析食用明胶中的铬元素[J]. 物理学报, 2014, 63(14): 145202.

    Zhang Y, Zhang D C, Ma X W, et al. Quantitative analysis of chromium in edible gelatin by using laser-induced breakdown spectroscopy[J]. Acta Physica Sinica, 2014, 63(14): 145202.

[7] Wen G H, Sun D X, Su M G, et al. LIBS detection of heavy metal elements in liquid solutions by using wood pellet as sample matrix[J]. Plasma Science and Technology, 2014, 16(6): 598-601.

[8] Stehrer T, Praher B, Viskup R, et al. Laser-induced breakdown spectroscopy of iron oxide powder[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(7): 973-978.

[9] 白凯杰, 姚顺春, 陆继东, 等. 激光诱导击穿光谱直接测量颗粒流的粒径效应及其修正方法研究[J]. 光学学报, 2016, 36(12): 1214005.

    Bai K J, Yao S C, Lu J D, et al. Particle size effect and its correction method by direct measurement of particle flow with laser-induced breakdown spectroscopy[J]. Acta Optica Sinica, 2016, 36(12): 1214005.

[10] Hahn D W, Lunden M M. Detection and analysis of aerosol particles by laser-induced breakdown spectroscopy[J]. Aerosol Science and Technology, 2000, 33(1/2): 30-48.

[11] Yao S C, Zhao J B, Xu J L, et al. Optimzing the binder percentage to reduce the matrix effects for the LIBS analysis of carbon in coal[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(4): 766-772.

[12] 王琦, 陈兴龙, 王静鸽, 等. 影响激光诱导等离子体稳定性的因素研究[J]. 光学学报, 2014, 34(6): 0630002.

    Wang Q, Chen X L, Wang J G, et al. Research on factors affecting the stability of laser-induced plasmas[J]. Acta Optica Sinica , 2014, 34(6): 0630002.

[13] 张励维, 龚瑞昆, 王晓磊. 粒径对激光诱导煤粉流等离子体特性的影响[J]. 激光技术, 2017, 41(3): 438-441.

    Zhang L W, Gong R K, Wang X L. Influence of particle size on plasma characters of laser-induced pulverized coal flow[J]. Laser Technology, 2017, 41(3): 438-441.

[14] 郑建平, 陆继东, 张博, 等. 空气环境下煤粉流LIBS多元素同时检测中激光能量研究[J]. 光谱学与光谱分析, 2014, 34(1): 221-225.

    Zheng J P, Lu J D, Zhang B, et al. Study of laser energy in multi-element detection of pulverized coal flow with laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 221-225.

[15] Wang X, Shi L, Lin Q, et al. Simultaneous and sensitive analysis of Ag(I), Mn(II), and Cr(II) in aqueous solution by LIBS combined with dispersive solid phase micro-extraction using nano-graphite as an adsorbent[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 1098-1104.

[16] 董美蓉, 陆继东, 李军, 等. 液相和固相钢铁的激光诱导击穿光谱特性[J]. 光学学报, 2011, 31(1): 0130002.

    Dong M R, Lu J D, Li J, et al. Properties of laser-induced breakdown spectroscopy between liquid steel and solid steel[J]. Acta Optica Sinica , 2011, 31(1): 0130002.

[17] 钱燕, 钟厦, 何勇, 等. 激光波长对煤激光诱导击穿光谱特性影响的试验研究[J]. 光谱学与光谱分析, 2017, 37(6): 1890-1895.

    Qian Y, Zhong X, He Y, et al. Effects of laser wavelength on properties of coal LIBS spectrum[J]. Spectroscopy and Spectral Analysis, 2017, 37(6): 1890-1895.

[18] 张大成, 马新文, 赵冬梅, 等. 药用胶囊中铬元素的LIBS快速检测[J]. 药物分析杂志, 2013, 33(12): 2070-2073.

    Zhang D C, Ma X W, Zhao D M, et al. Rapid detection of chromium in medicinal capsules by LIBS technology[J]. Chinese Journal of Pharmaceutical Analysis, 2013, 33(12): 2070-2073.

[19] Yan X S, Yang L, Zhang X C, et al. Concept of an accelerator-driven advanced nuclear energy system[J]. Energies, 2017, 10(7): 944-956.

[20] Yang L, Zhan W L. A closed nuclear energy system by accelerator-driven ceramic reactor and extend AIROX reprocessing[J]. Science China Technological Sciences, 2017, 60(11): 1702-1706.

[21] National Institute of Standards and Technology. Atomic spectral database[Z/OL]. https://www.nist.gov/pml/atomic-spectra-database.

龚书航, 钱东斌, 苏茂根, 赵冬梅, 孙对兄, 吴超, 王永强, 马新文. 复杂颗粒状物质中微量元素的LIBS稳定性研究[J]. 激光与光电子学进展, 2018, 55(7): 073001. Gong Shuhang, Qian Dongbin, Su Maogen, Zhao Dongmei, Sun Duixiong, Wu Chao, Wang Yongqiang, Ma Xinwen. Stability of Laser-Induced Breakdown Spectroscopy from Microelements in Complex Granular Matters[J]. Laser & Optoelectronics Progress, 2018, 55(7): 073001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!