中国激光, 2012, 39 (12): 1203002, 网络出版: 2012-11-09   

高重复频率飞秒激光烧蚀熔融石英制作单偏振微结构波导

Directly Writing Single Polarization Microstructure Waveguide in Fused Silica by High Repetition Rate Femtosecond Laser
作者单位
天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术科学教育部重点实验室, 天津 300072
引用该论文

汪月容, 李毅, 王思佳, 何书通, 柴路, 王清月, 胡明列. 高重复频率飞秒激光烧蚀熔融石英制作单偏振微结构波导[J]. 中国激光, 2012, 39(12): 1203002.

Wang Yuerong, Li Yi, Wang Sijia, He Shutong, Chai Lu, Wang Qingyue, Hu Minglie. Directly Writing Single Polarization Microstructure Waveguide in Fused Silica by High Repetition Rate Femtosecond Laser[J]. Chinese Journal of Lasers, 2012, 39(12): 1203002.

参考文献

[1] K. M. Davis, K. Miura, N. Sugimoto et al.. Writing waveguides in glass with a femtosecond laser[J]. Opt. Lett., 1996, 21(21): 1729~1731

[2] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2: 219~225

[3] M. Ams, G. D. Marshall, P. Dekker et al.. Ultrafast laser written active devices[J]. Laser & Photon. Rev., 2009, 3(6): 535~544

[4] G. Della Valle, R. Osellame, P. Laporta. Micromachining of photonic devices by femtosecond laser pulses[J]. J. Opt. A: Pure Appl. Opt., 2009, 11(1): 013001

[5] C. Zhang, N. Dong, J. Yang et al.. Channel waveguide lasers in NdGGG crystals fabricated by femtosecond laser inscription[J]. Opt. Express, 2011, 19(13): 12503~12508

[6] A. M. Streltsov, N. F. Borrelli. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Opt. Lett., 2001, 26(1): 42~43

[7] 刘博文, 胡明列, 宋有建 等. 微焦耳、百飞秒光子晶体光纤飞秒激光放大器[J]. 中国激光, 2010, 37(9): 2415~2418

    Liu Bowen, Hu Minglie, Song Youjian et al.. Photonic crystal fiber femtosecond laser amplifier with millijoules and 100 fs level output[J]. Chinese J. Lasers, 2010, 37(9): 2415~2418

[8] Y. Nasu, M. Kohtoku, Y. Hibino. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit[J]. Opt. Lett., 2005, 30(7): 723~725

[9] M. Pospiech, M. Emons, A. Steinmann et al.. Double waveguide couplers produced by simultaneous femtosecond writing[J]. Opt. Express, 2009, 17(5): 3555~3563

[10] M. Kim, D. J. Hwang, H. Jeon et al.. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses[J]. Lab Chip, 2009, 9(2): 311~318

[11] S. M. Eaton, M. L. Ng, R. Osellame et al.. High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser[J]. Journal of Non-Crystalline Solids, 2011, 357(11-13): 2387~2391

[12] A. M. Streltsov, N. F. Borrelli. Study of femtosecond-laser-written waveguides in glasses[J]. J. Opt. Soc. Am. B, 2002, 19(10): 2496~2504

[13] C. B. Schaffer, J. F. Garcia, E. Mazur. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser[J]. Appl. Phys. A, 2003, 76(3): 351~354

[14] J. W. Chan, T. Huser, S. Risbud et al.. Structural changes in fused silica after exposure to focused femtosecond laser pulses[J]. Opt. Lett., 2001, 26(21): 1726~1728

[15] E. Bricchi, B. G. Klappauf, P. G. Kazansky. Form birefringence and negative index change created by femtosecond direct writing in transparent materials[J]. Opt. Lett., 2004, 29(1): 119~121

[16] R. Taylor, C. Hnatovsky, E. Simova. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser Photon. Rev., 2008, 2(1-2): 26~46

[17] J. Burghoff, S. Nolte, A. Tunnermann. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Appl. Phys. A, 2007, 89(1): 127~132

[18] R. Graf, A. Fernandez, M. Dubov et al.. Pearl-chain waveguides written at megahertz repetition rate[J]. Appl. Phys. B, 2007, 87(1): 21~27

[19] H. Zhang, S. M. Eaton, P. R. Herman. Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses[J]. Opt. Express, 2006, 14(11): 4826~4834

[20] S. M. Eaton, H. Zhang, M. L. Ng et al.. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides[J]. Opt. Express, 2008, 16(13): 9443~9458

[21] B. Poumellec, M. Lancry, A. Chahid-Erraji et al.. Modification thresholds in femtosecond laser processing of pure silica: review of dependencieson laser parameters[invited][J]. Opt. Materials Express, 2011, 1(4): 766~782

[22] D. Homoelle, S. Wielandy, A. L. Gaeta et al.. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Opt. Lett., 1999, 24(18): 1311~1313

[23] Y. Yue, G. Kai, Z. Wang et al.. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice[J]. Opt. Lett., 2007, 32(5): 469~471

[24] J. Wang, C. Jiang, W. Hu et al.. Dispersion and polarization properties of elliptical air-hole-containing photonic crystal fibers[J]. Opt. & Laser Technol., 2007, 39(5): 913~917

[25] M. J. Steel, R. M. Osgood, Jr. Elliptical-hole photonic crystal fibers[J]. Opt. Lett., 2001, 26(4): 229~231

汪月容, 李毅, 王思佳, 何书通, 柴路, 王清月, 胡明列. 高重复频率飞秒激光烧蚀熔融石英制作单偏振微结构波导[J]. 中国激光, 2012, 39(12): 1203002. Wang Yuerong, Li Yi, Wang Sijia, He Shutong, Chai Lu, Wang Qingyue, Hu Minglie. Directly Writing Single Polarization Microstructure Waveguide in Fused Silica by High Repetition Rate Femtosecond Laser[J]. Chinese Journal of Lasers, 2012, 39(12): 1203002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!