中国激光, 2012, 39 (12): 1203002, 网络出版: 2012-11-09   

高重复频率飞秒激光烧蚀熔融石英制作单偏振微结构波导

Directly Writing Single Polarization Microstructure Waveguide in Fused Silica by High Repetition Rate Femtosecond Laser
作者单位
天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术科学教育部重点实验室, 天津 300072
摘要
利用中心波长为1040 nm、脉宽为190 fs、重复频率在200~5000 kHz之间可调的飞秒激光对熔融石英进行微加工。研究了烧蚀阈值随脉冲重复频率、扫描速度的变化规律,阐明不同参数下热扩散效应及热累积效应对烧蚀过程的主导作用。在最优化条件下,制作了双线波导,可以对1040 nm激光实现圆形基模传输。进一步制作了椭圆晶胞的六角微结构波导,对1040 nm激光可以输出近高斯强度分布的基模,模场面积达到247.48 μm2。该微结构波导可实现单偏振传输,消光比达9.05,波导数值孔径约0.017。
Abstract
Femtosecond laser at 1040 nm centre wavelength with 190 fs pulse width and variable (200~5000 kHz) repetition rate has been applied to microfabricate fused silica. Threshold energy has been measured as a function of the pulse repetition rate and the scan speed. The role of thermal diffusion and heat accumulation effects in forming waveguide is demonstrated. Double-line waveguides with the optimal parameters have been written, where the guided mode is fundamental mode and nearly circular. Hexagonal microstructure waveguide with elliptical cells has been made, where the mode has a nearly Gaussian intensity profile at 1040 nm. The microstructure waveguide has a large mode area about 247.48 μm2 and single polarization propagation property with extinction ratio about 9.05. The numerical aperture of the waveguide is about 0.017.
参考文献

[1] K. M. Davis, K. Miura, N. Sugimoto et al.. Writing waveguides in glass with a femtosecond laser[J]. Opt. Lett., 1996, 21(21): 1729~1731

[2] R. R. Gattass, E. Mazur. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2: 219~225

[3] M. Ams, G. D. Marshall, P. Dekker et al.. Ultrafast laser written active devices[J]. Laser & Photon. Rev., 2009, 3(6): 535~544

[4] G. Della Valle, R. Osellame, P. Laporta. Micromachining of photonic devices by femtosecond laser pulses[J]. J. Opt. A: Pure Appl. Opt., 2009, 11(1): 013001

[5] C. Zhang, N. Dong, J. Yang et al.. Channel waveguide lasers in NdGGG crystals fabricated by femtosecond laser inscription[J]. Opt. Express, 2011, 19(13): 12503~12508

[6] A. M. Streltsov, N. F. Borrelli. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses[J]. Opt. Lett., 2001, 26(1): 42~43

[7] 刘博文, 胡明列, 宋有建 等. 微焦耳、百飞秒光子晶体光纤飞秒激光放大器[J]. 中国激光, 2010, 37(9): 2415~2418

    Liu Bowen, Hu Minglie, Song Youjian et al.. Photonic crystal fiber femtosecond laser amplifier with millijoules and 100 fs level output[J]. Chinese J. Lasers, 2010, 37(9): 2415~2418

[8] Y. Nasu, M. Kohtoku, Y. Hibino. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit[J]. Opt. Lett., 2005, 30(7): 723~725

[9] M. Pospiech, M. Emons, A. Steinmann et al.. Double waveguide couplers produced by simultaneous femtosecond writing[J]. Opt. Express, 2009, 17(5): 3555~3563

[10] M. Kim, D. J. Hwang, H. Jeon et al.. Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses[J]. Lab Chip, 2009, 9(2): 311~318

[11] S. M. Eaton, M. L. Ng, R. Osellame et al.. High refractive index contrast in fused silica waveguides by tightly focused, high-repetition rate femtosecond laser[J]. Journal of Non-Crystalline Solids, 2011, 357(11-13): 2387~2391

[12] A. M. Streltsov, N. F. Borrelli. Study of femtosecond-laser-written waveguides in glasses[J]. J. Opt. Soc. Am. B, 2002, 19(10): 2496~2504

[13] C. B. Schaffer, J. F. Garcia, E. Mazur. Bulk heating of transparent materials using a high-repetition-rate femtosecond laser[J]. Appl. Phys. A, 2003, 76(3): 351~354

[14] J. W. Chan, T. Huser, S. Risbud et al.. Structural changes in fused silica after exposure to focused femtosecond laser pulses[J]. Opt. Lett., 2001, 26(21): 1726~1728

[15] E. Bricchi, B. G. Klappauf, P. G. Kazansky. Form birefringence and negative index change created by femtosecond direct writing in transparent materials[J]. Opt. Lett., 2004, 29(1): 119~121

[16] R. Taylor, C. Hnatovsky, E. Simova. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass[J]. Laser Photon. Rev., 2008, 2(1-2): 26~46

[17] J. Burghoff, S. Nolte, A. Tunnermann. Origins of waveguiding in femtosecond laser-structured LiNbO3[J]. Appl. Phys. A, 2007, 89(1): 127~132

[18] R. Graf, A. Fernandez, M. Dubov et al.. Pearl-chain waveguides written at megahertz repetition rate[J]. Appl. Phys. B, 2007, 87(1): 21~27

[19] H. Zhang, S. M. Eaton, P. R. Herman. Low-loss Type II waveguide writing in fused silica with single picosecond laser pulses[J]. Opt. Express, 2006, 14(11): 4826~4834

[20] S. M. Eaton, H. Zhang, M. L. Ng et al.. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides[J]. Opt. Express, 2008, 16(13): 9443~9458

[21] B. Poumellec, M. Lancry, A. Chahid-Erraji et al.. Modification thresholds in femtosecond laser processing of pure silica: review of dependencieson laser parameters[invited][J]. Opt. Materials Express, 2011, 1(4): 766~782

[22] D. Homoelle, S. Wielandy, A. L. Gaeta et al.. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses[J]. Opt. Lett., 1999, 24(18): 1311~1313

[23] Y. Yue, G. Kai, Z. Wang et al.. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice[J]. Opt. Lett., 2007, 32(5): 469~471

[24] J. Wang, C. Jiang, W. Hu et al.. Dispersion and polarization properties of elliptical air-hole-containing photonic crystal fibers[J]. Opt. & Laser Technol., 2007, 39(5): 913~917

[25] M. J. Steel, R. M. Osgood, Jr. Elliptical-hole photonic crystal fibers[J]. Opt. Lett., 2001, 26(4): 229~231

汪月容, 李毅, 王思佳, 何书通, 柴路, 王清月, 胡明列. 高重复频率飞秒激光烧蚀熔融石英制作单偏振微结构波导[J]. 中国激光, 2012, 39(12): 1203002. Wang Yuerong, Li Yi, Wang Sijia, He Shutong, Chai Lu, Wang Qingyue, Hu Minglie. Directly Writing Single Polarization Microstructure Waveguide in Fused Silica by High Repetition Rate Femtosecond Laser[J]. Chinese Journal of Lasers, 2012, 39(12): 1203002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!