作者单位
摘要
天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术科学教育部重点实验室, 天津 300072
利用中心波长为1040 nm、脉宽为190 fs、重复频率在200~5000 kHz之间可调的飞秒激光对熔融石英进行微加工。研究了烧蚀阈值随脉冲重复频率、扫描速度的变化规律,阐明不同参数下热扩散效应及热累积效应对烧蚀过程的主导作用。在最优化条件下,制作了双线波导,可以对1040 nm激光实现圆形基模传输。进一步制作了椭圆晶胞的六角微结构波导,对1040 nm激光可以输出近高斯强度分布的基模,模场面积达到247.48 μm2。该微结构波导可实现单偏振传输,消光比达9.05,波导数值孔径约0.017。
激光技术 飞秒激光微纳加工 波导 光子晶体 
中国激光
2012, 39(12): 1203002
作者单位
摘要
天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术科学教育部重点实验室, 天津 300072
利用中心波长为775 nm、重复频率为1 kHz、脉宽为130 fs的飞秒激光脉冲对厚度为200 μm的铜片进行微加工,制作了适用于太赫兹(THz)波段(0.1~4 THz)的二维金属亚波长孔阵列。实验中,分别固定激光能量和加工时间,研究烧蚀孔直径随激光功率及加工时间的变化规律,发现激光偏振态是引起烧蚀缺口的主要原因。利用数值模拟软件(CST)计算出适用于THz波段的金属孔阵列结构参数,根据以上实验结果选择合适的激光参数制作了孔阵列。
激光技术 飞秒激光微纳加工 打孔 二维金属亚波长孔阵列 
激光与光电子学进展
2011, 48(5): 051402
作者单位
摘要
天津大学光电信息技术科学教育部重点实验室, 天津 300072
利用50 MHz和1 MHz的重复频率光子晶体光纤飞秒激光分别在45#钢表面产生了微浮雕结构。实验发现微浮雕结构的高度和宽度与入射激光功率、激光扫描速度以及脉冲重复频率有关。通过调整这些参数, 可以实现对微浮雕形态结构的精确控制。对微浮雕结构的产生机制进行了初步分析, 发现微浮雕结构的产生与高重复频率飞秒激光的热积累效应有关。热积累导致了45#钢的表面熔化, 在液体表面张力和温度梯度力共同作用下, 产生了微浮雕结构。
激光技术 飞秒激光微纳加工 微浮雕结构 光子晶体光纤飞秒激光器 高重复频率 
中国激光
2010, 37(S1): 339
作者单位
摘要
天津大学精密仪器与光电子工程学院超快激光研究室 光电信息技术科学教育部重点实验室, 天津 300072
以掺镱大模面积光子晶体光纤(PCF)飞秒激光放大器为光源组建了一套结构紧凑且运行稳定的飞秒激光微纳加工系统,中心波长为1040 nm, 重复频率50 MHz, 最大平均功率16 W, 光栅压缩后脉冲宽度85 fs。利用该套系统在硅片、金属薄膜(Cr膜、Al膜)上演示了微图案的刻划, 并与采用重复频率1 kHz的固体钛宝石飞秒激光放大器的加工结果进行对比, 发现利用新组建的加工系统进行微纳加工, 由于单脉冲能量较小且便于调节, 使得刻划微图案时边缘加工效果更容易控制, 且避免了加工过程中未加工区域受到的污染, 保护了制作衬底。显示了该套系统高重复频率和高平均功率的特性及其在改善微纳加工效果及明显提高加工效率方面的优势。
激光技术 飞秒激光微纳加工 微图案刻划 光子晶体光纤飞秒激光放大器 高重复频率 高平均功率 
中国激光
2008, 35(7): 1078

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!