光电工程, 2016, 43 (5): 1, 网络出版: 2016-06-06  

基于平均绝对差分的光谱成像伪装干扰效果评估

Evaluation of Camouflage Jamming Effect on Spectral Imaging Based on Mean Absolute Difference
作者单位
北京跟踪与通信技术研究所, 北京 100094
摘要
为了探索研究利用宽波段伪装对光谱成像设备实现有效干扰的可行性, 并定量、客观评估光谱成像伪装干扰效果, 利用一种超光谱成像仪和一种宽波段伪装网进行了光谱成像伪装干扰试验, 并利用平均绝对差分对光谱成像伪装干扰效果进行了定量分析和评估。结果表明, 宽波段伪装网在超光谱成像仪各谱段均有一定的伪装干扰效果, 伪装干扰效果的显著程度因伪装前的目标特性、伪装网层数以及谱段的不同而不同; 利用平均绝对差分准则可以将伪装干扰效果的显著程度定量化, 并排除了主观因素, 使对光谱成像伪装干扰效果的评估更加精确, 因此是一种适用于光谱成像干扰效果评估的定量、客观准则。
Abstract
To investigate and evaluate the jamming effect of broad-band camouflage on spectral imaging devices, camouflage jamming tests were carried out with a hyperspectral imager and a kind of broad-band camouflage net. The camouflage jamming effect on the hyperspectral imager was analyzed and evaluated quantitatively by using the mean absolute difference. The results show that the broad-band camouflage net has certain jamming effect on the hyperspectral imager at all the spectral bands, and the markedness of camouflage jamming effect varies with the target characteristics before being camouflaged, camouflage net layers and the spectral band. By using the mean-absolute-difference rule, camouflage jamming effect on spectral imaging could be evaluated quantitatively and impersonally, which makes the evaluation results more accurate. So the mean-absolute-difference rule could be used as a quantitative and impersonal rule for evaluating the jamming effect on spectral imaging.
参考文献

[1] 张良培, 张立福. 高光谱遥感[M].北京: 测绘出版社, 2011: 215-220.

    ZHANG Liangpei, ZHANG Lifu. High-Spectral Remote Sensing[M]. Beijing: Mapping Press, 2011: 215-220.

[2] 麻永平, 张炜, 刘东旭. 高光谱侦察技术特点及其对地面军事目标威胁分析[J].上海航天, 2012, 29(1): 37-40.

    MA Yongping, ZHANG Wei, LIU Dongxu. Characteristics of Hyperspectral Reconnaissance and Threat to Ground Military Targets[J]. Aerospace Shanghai, 2012, 29(1): 37-40.

[3] KANAEV A, WALLS T. Fusion of Hyperspectral and Ladar Data for Autonomous Target Detection[C]// Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications, Orlando, Florida, USA, April 25, 2011: 806408.

[4] LAGUEUX P, PUCKRIN E, TURCOTTE C S, et al. Airborne Infrared Hyperspectral Imager for Intelligence, Surveillance and Reconnaissance Applications[C]// Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI, Edinburgh, United Kingdom, Sep 24, 2012: 854226.

[5] WEATHERBEE O, JANASKIE J, HYV.RINEN T. Advanced Hyperspectral Imaging Solutions for Near Real-Time Target Detection[C]// Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI, Edinburgh, United Kingdom, Sep 24, 2012: 854223.

[6] 高永芳, 时家明, 赵大鹏, 等. 一种基于光子晶体的中远红外双波段兼容伪装材料[J].红外与激光工程, 2012, 41(4): 970-974.

    GAO Yongfang, SHI Jiaming, ZHAO Dapeng, et al. A Kind of Dual Band of Middle and Far Infrared Compatible Camouflage Material Based on Photonic Crystals[J]. Infrared and Laser Engineering, 2012, 41(4): 970-974.

[7] ALBERTONI A, PERFETTO S. Mid-Wave and Long-Wave Infrared Metamaterials and Nano-Materials Design with Finite Element and Finite Difference Time Domain Models for Target Camouflage[C]// Electro-Optical and Infrared Systems: Technology and Applications VII, Toulouse, France, Sep 20, 2010: 78340U.

[8] MILEWSKI S, DULSKI R, KASTEK M, et al. Coatings Masking in Near, Medium, and Far Infrared Used for Ship Camouflage[C]// Electro-Optical and Infrared Systems: Technology and Applications VIII, Prague, Czech, Sep 19, 2011: 81850V.

[9] ALBERTONI A. Long Wave Infrared Metamaterials and Nano-Materials Design, Simulation, and Laboratory Test for Target Camouflage in the Defence Application[C]// Electro-Optical and Infrared Systems: Technology and Applications VIII, Prague, Czech, Sep 19, 2011: 818509.

[10] PEZESHKIAN N, NEFF J D. Adaptive Electronic Camouflage Using Texture Synthesis[C]// Unmanned Systems Technology XIV, Baltimore, USA, Apr 23, 2012: 838707.

[11] 王建宇, 舒嵘, 刘银年, 等. 成像光谱技术导论[M].北京: 科学出版社, 2011: 100-101.

    WANG Jianyu, SHU Rong, LIU Yinnian, et al. Introduction to Imaging Spectral Technology[M]. Beijing: Science Press, 2011: 100-101.

[12] 高卫, 黄惠明, 李军. 光电干扰效果评估方法[M].北京: 国防工业出版社, 2006: 67-73.

    GAO Wei, HUANG Huiming, LI Jun. Evaluation Methods for Electro-Optical Jamming Effectiveness[M]. Beijing: National Defense Industry Press, 2006: 67-73.

[13] 高卫, 贺伟. 烟幕对光电观瞄设备干扰效果的评估准则[J].光子学报, 2007, 36(增): 270-273.

    GAO Wei, HE Wei. Evaluation Rules of Smokescreen Jamming Effectiveness on Electro-Optical Observation and Aiming Devices[J]. Acta Photonica Sinica, 2007, 36(Suppl): 270-273.

[14] 张长江. 数字图像处理及其应用[M].北京: 清华大学出版社, 2013: 332-333.

    ZHANG Changjiang. Digital Image Processing and its Application[M]. Beijing: Tsinghua University Press, 2013: 332-333.

[15] WANG Jia, YIN Haibing, ZHOU Bingqian, et al. A Low-Cost MAD Prediction Algorithm for H.264 Rate Control Facilitating Hardware Implementation[C]// 4th International Congress on Image and Signal Processing, Shanghai, China, Oct 15-17, 2011: 18-21.

[16] LIM W, BAJIC I, SIM D. QP Initialization and Interview MAD Prediction for Rate Control in HEVC-Based Multi-View Video Coding[C]// IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, May 26-31, 2013: 2045-2049.

高卫, 孙鹏, 孙奕帆, 党东妮. 基于平均绝对差分的光谱成像伪装干扰效果评估[J]. 光电工程, 2016, 43(5): 1. GAO Wei, SUN Peng, SUN Yifan, DANG Dongni. Evaluation of Camouflage Jamming Effect on Spectral Imaging Based on Mean Absolute Difference[J]. Opto-Electronic Engineering, 2016, 43(5): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!