中国激光, 2007, 34 (8): 1037, 网络出版: 2007-09-05   

808 nm大功率无铝有源区非对称波导结构激光器

808 nm High-Power Lasers with Al-Free Active Region with Asymmetric Waveguide Structure
作者单位
中国科学院半导体研究所光电子器件国家工程中心, 北京 100083
摘要
采用分别限制非对称波导结构,将光场从对称分布变为非对称分布,降低了载流子光吸收损耗,并允许p型区具有更高的掺杂水平,从而使器件电阻降低。对GaAsP/GaInP张应变单量子阱(SQW)非对称波导结构激光器的光场特性进行了理论分析,设计了波导层厚度,并制作了波长为808 nm的无铝有源区大功率半导体激光器。器件综合特性测试结果为:腔长900 μm器件的阈值电流密度典型值为400 A/cm2,内损耗低至1.0 cm-1;连续工作条件下,150 μm条宽器件输出功率达到6 W,最大斜率效率为1.25 W/A。器件激射波长为807.5 nm,平行和垂直结的发散角分别为3.0°和34.8°。20~70 ℃范围内特征温度达到133 K。结果表明,分别限制非对称波导结构是降低内损耗,提高大功率半导体激光器特性的有效措施。
Abstract
Shifting of the optical mode from symmetric distribution to asymmetric distribution by separate confinement asymmetric waveguide structure reduces optical absorption loss by carriers, and permits higher doping of the p side to reduce resistance. Based on the theoretical analysis for the optical field distribution characteristics of GaAsP/GaInP tensile-strained single quantum well (SQW) lasers with asymmetric waveguide, the thickness of waveguide layers was optimized, and a high-power semiconductor laser with Al-free active region was fabricated and studied experimentally. For a 900 μm cavity length device, the typical threshold current density is 400 A/cm2, and a low internal loss around 1.0 cm-1 is achieved. Under continuous wave (CW) operation condition, 150 μm aperture devices achieve a CW output power of 6 W, the maximum slope efficiency of the prepared devices is 1.25 W/A, and the lasing wavelength is 807.5 nm. Horizontal and vertical far-field divergence angles are 3.0° and 34.8°, respectively. The characteristic temperature of the laser in the range of 20~70 ℃ is estimated to be about 133 K. Separate confinement asymmetric waveguide structure is proven to be an impactful method for reducing optical loss and improving the characteristics of high power diode lasers.
参考文献

[1] P. A. Crump, T. R. Crum, M. DeVito et al.. High efficiency, high power 808-nm laser array and stacked arrays optimized for elevated temperature operation [C]. SPIE, 2004, 5336:144~148

[2] Toshiro Hayakawa. High reliability in 0.8-μm high power InGaAsP/InGaP/AlGaAs laser diodes with a broad waveguide [C]. SPIE, 1999, 3628:29~37

[3] Markus Weyers. GaAs-based high power laser diodes [C]. Proc. 11th European workshop on MOVPE, 2005. 273~278

[4] Li Jianjun, Han Jun, Deng Jun et al.. InAlGaAs quantum well 808 nm laser diode with low threshold current and high efficiency [J]. Chinese J. Lasers, 2006, 33(9):1159~1162
李建军,韩军,邓军 等. 低阈值高效率InAlGaAs量子阱808 nm激光器[J]. 中国激光, 2006, 33(9):1159~1162

[5] . Knauer, G. Erbert, R. Staske et al.. High-power 808 nm lasers with a super-large optical cavity[J]. Semicond. Sci. Technol., 2005, 20(6): 621-624.

[6] D. Z. Garbuzov, J. H. Abeles, N. A. Morris et al.. High power separate confinement heterostructure AlGaAs/GaAs laser diodes with broadened waveguide [C]. SPIE, 1996, 2682:20~26

[7] . Botez. Design considerations and analytical approximations for high ontinuous-wave power, broad-waveguide diode lasers[J]. Appl. Phys. Lett., 1999, 74(21): 3102-3104.

[8] Iulian Petrescu-Prahova, Tom Moritz, John Riordan. High brightness 810 nm long cavity diode lasers with high d/Г ratio in asymmetric low confinement epitaxial structure [C]. Proceedings of the 2001 IEEE/LEOS Annual Meeting, 2001, 1:135

[9] Matthew Peters, Victor Rossin, Bruno Acklin. High efficiency, high reliability laser diodes at JDS uniphase [C]. SPIE, 2005, 5711:142~151

[10] . Buda, W. C. van der Vleuten, Gh. Iordache et al.. Low-loss low-confinement GaAs-AlGaAs DQW laser diode with optical trap layer for high-power operation[J]. IEEE Photon. Technol. Lett., 1999, 11(2): 161-163.

[11] I. B. Petrescu-Prahova, M. Buda, Gh. Iordeche et al.. High power low confinement AlCaAs/CaAs single quantum well laser diode operating in the fundamental lateral mode [C]. CLEO/EUROPE Technical Digest, 1994. 171

[12] . Iordache, M. Buda, G. A. Acket et al.. High power CW output from low confinement asymmetric structure diode laser[J]. Electron. Lett., 1999, 35(2): 148-149.

[13] . J. Lee, L. J. Mawst, D. Botez. MOCVD growth of asymmetric 980 nm InGaAs/InGaAsP broad-waveguide diode lasers for high power applications[J]. J. Crystal Growth, 2003, 249(1): 100-105.

[14] . Radically asymmetric wavelength-stabilized lasers reduce loss[J]. Photonic Spectra, 2005, 39: 106-108.

[15] . K. Wade, L. J. Mawst, D. Botez et al.. High continuous wave power, 0.8 μm-band, Al-free active-region diode lasers[J]. Appl. Phys. Lett., 1997, 70(2): 149-151.

[16] Yang Jinhua, Ren Dacui, Zhang Jianjia et al.. Study on optical characteristics of lnGaAsP/GaAs SQW lasers [J]. Chinese J. Lasers, 2000, A27(8):687~690
杨进华,任大翠,张剑家 等. InGaAsP/GaAs单量子阱半导体激光器光学特性的研究[J]. 中国激光, 2000, A27(8):687~690

[17] . . High-efficiency diode lasers at high output power[J]. Appl. Phys. Lett., 1999, 74(11): 1525-1527.

[18] . J. Mawst, A. Bhattacharya, L. Lopez et al.. 8 W continuous wave front-facet power from broad-waveguide Al-free 980 nm diode lasers[J]. Appl. Phys. Lett., 1996, 69(11): 1532-1534.

[19] . J. Mawst, A. Bhattacharya, M. Nesnidal et al.. MOVPE-grown high CW power InGaAs/InGaAsP/InGaP diode lasers[J]. J. Crystal Growth, 1997, 170(1): 383-389.

[20] . Gokhale, J. Christopher Dries, Pavel V. Studenkov et al.. High-power high-efficiency 0.98-μm wavelength InGaAs-(In)GaAs(P)-InGaP broadened waveguide lasers grown by gas-source molecular beam epitaxy[J]. IEEE J. Quantum Electron., 1997, 33(12): 2266-2276.

[21] . Z. Garbuzov, R. J. Menna, R. U. Martinelli et al.. High power continuous and quasi-continuous wave InGaAsP/InP broad-waveguide separate confinement-heterostructure multiquantum well diode lasers[J]. Electron. Lett., 1997, 33(19): 1635-1636.

[22] . K. Wade, L. J. Mawst, D. Botez et al.. 6.1 W continuous wave front-facet power from Al-free active-region (λ=805 nm) diode lasers[J]. Appl. Phys. Lett., 1998, 72(1): 4-6.

[23] . High-power laser diodes based on InGaAsP alloys[J]. Nature, 1994, 369(6482): 631-633.

[24] Dmitry Z. Garbuzov, N. Yu. Antonishkis, A. D. Bondarev et al.. High-power 0.8 μm InGaAsP-GaAs SCH SQW lasers [J]. IEEE J. Quantum Electron., 1991, QE-21(6):1531~1536

[25] Bo Baoxue, Zhu Baoren, Zhang Baoshun et al.. LPE of InGaAsP/GaAs semiconductor lasers [J]. Chinese J. Lasers, 1998, A25(1):21~24
薄报学,朱宝仁,张宝顺 等. InGaAsP/GaAs单量子阱SCH半导体激光器的液相外延[J]. 中国激光, 1998, A25(1):21~24

[26] Gao Xin,Qu Yi, Bo Baoxue et al.. 808 nm high power semiconductor lasers with high characteristic temperature [J]. Semiconductor Optoelectronics, 1999, 20(6):388~389,392
高欣,曲轶,薄报学 等. 具有高特征温度的808 nm大功率半导体激光器[J]. 半导体光电, 1999, 20(6):388~389,392

[27] . Wenzel, F. Bugge, G. Erbert et al.. High-power diode lasers with small vertical beam divergence emitting at 808 nm[J]. Electron. Lett., 2001, 37(16): 1024-1026.

仲莉, 王俊, 冯小明, 王勇刚, 王翠鸾, 韩琳, 崇锋, 刘素平, 马骁宇. 808 nm大功率无铝有源区非对称波导结构激光器[J]. 中国激光, 2007, 34(8): 1037. 仲莉, 王俊, 冯小明, 王勇刚, 王翠鸾, 韩琳, 崇锋, 刘素平, 马骁宇. 808 nm High-Power Lasers with Al-Free Active Region with Asymmetric Waveguide Structure[J]. Chinese Journal of Lasers, 2007, 34(8): 1037.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!