强激光与粒子束, 2012, 24 (1): 123, 网络出版: 2012-02-14   

快点火参数窗口的计算

Parameter window for fast ignition calculated by Monte-Carlo method
作者单位
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
在入射粒子和等离子体相互作用物理学基础上, 采用蒙特卡罗方法计算了常温和10 keV下, 电子、氢、氘、氚和氦粒子在500 g/cm3纯氘等离子体中的能量损失、射程, 以及在和燃料直径为50 μm, 在边缘、中心点火两种方式下的能量沉积时间, 得出燃料约束时间为20 ps条件下的束流强度。实现快点火的边缘(中心)点火要求的最低入射束流强度:电子束为363(458) MA, 质子束为187(355) MA, 氘束为13.1(24.8) MA, 氚束为10.9(20.9) MA, 氦束为9.34(17.0) MA。单个粒子在边缘(中心)点火的最长能量沉积时间分别为电子0.036(0.078) ps, 质子0.219(0.569) ps, 氘0.241(0.651) ps, 氚0.320(0.854) ps, 氦0.228(0.592) ps, 均小于燃料约束时间。数据的分析表明, 入射粒子射程的末端设计在加热区, 可以有效提高加热效率, 同时也可以降低需要的束流强度。点火需要的最低总能量, 应通过增加入射粒子的流强来实现。
Abstract
The interaction physics between energetic particle and plasma are introduced. The energy loss, range and pass-through time of energetic electron, proton, D, T or He in pure D plasma of 500 g/cm3 in density and 50 μm in diameter at room temperature or 10 keV were calculated by Monte-Carlo method. The results show that, for electron, proton, D, T or He beam, the lowest beam intensity needed for edge(center) igniting is 363(458), 187(355), 13.1(24.8), 10.9(20.9) or 9.34(17.0) MA, respectively; the longest time for single particle to pass through plasma is 0.036(0.078), 0.219(0.569), 0.241(0.651), 0.320(0.854) or 0.228(0.592) ps, respectively. All the time above is below the fuel confinement time. Because of the Bragg peak of energy loss curve or higher energy loss, the end of particle range should be located in the heating zone to improve the heating efficiency and lower the bunch intensity needed for ignition. The lowest energy for ignition should be realized by increasing bunch intensity.
参考文献

[1] 沈百飞. 惯性聚变物理[M].北京:科学出版社, 2008.(Shen Baifei. The physics of inertial fusion. Beijing: Science Press, 2008)

[2] Atzeni S. Inertial fusion ignitor: ignition pulse parameter window vs the penetration depth of the heating particle and the density of the precompressed fuel[J]. Phys Plasmas, 1999, 6(8):3316-3326.

[3] Honrubia J J, Meyer-ter-Vehn J. Fast ignition of fusion targets by laser-driven electrons[J]. Plasma Phys Control Fusion, 2009, 51: 014008.

[4] Solodov A A, Anderson K S, Betti R, et al. Integrated simulations of implosion, electron transport, and heating for direct-drive fast-ignition targets[J]. Phys Plasmas, 2009, 16:056309.

[5] Temporal M, Ramis R, Honrubial J J, et al. Fast ignition induced by shocks generated by laser-accelerated proton beams[J]. Plasma Phys Control Fusion, 2009, 51:035010.

[6] Temporal M, Honrubia J J, Atzeni S. Proton-beam driven fast ignition of inertially confined fuels: reduction of the ignition energy by the use of two proton beams with radially shaped profiles[J]. Phys Plasmas, 2008, 15: 052702.

[7] Perkins L J, Betti R, LaFortune K N, et al. Shock ignition: a new approach to high gain inertial confinement fusion on the National Ignition Facility[J]. Phys Rev Lett, 2009, 103: 045004.

[8] Mauldin M P, Giraldez E, Jaquez J S, et al. Fabrication of targets for proton focus cone fast ignition experiments[J]. Fusion Science And Technology, 2007, 51(4):626-630.

[9] Ziegler J F. The stopping of energetic light ions in elemental matter[J]. J Appl Phys, 1999, 85(3): 1249-1272.

[10] Solodov A A, Betti R. Stopping power and range of energetic electrons in dense plasmas of fast-ignition fusion targets[J]. Phys Plasmas, 2008, 15: 042707.

[11] 郑春开.等离子体物理[M].北京:北京大学出版社, 2009. (Zheng Chunkai. Plasma physics. Beijing: Peking University Press, 2009)

[12] Atzeni S, Temporal M, Honrubia J J. A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons[J]. Nucl Fusion, 2002, 42(3): L1-L4.

王衍斌. 快点火参数窗口的计算[J]. 强激光与粒子束, 2012, 24(1): 123. Wang Yanbin. Parameter window for fast ignition calculated by Monte-Carlo method[J]. High Power Laser and Particle Beams, 2012, 24(1): 123.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!