红外与激光工程, 2019, 48 (1): 0106007, 网络出版: 2019-04-02  

地面激光扫描仪的灰度优先距离检校模型

Ranging calibration model of terrestrial laser scanner based on gray level priority
作者单位
1 中国科学院电子学研究所, 北京 100190
2 中国科学院大学, 北京 100049
摘要
针对加乘常数改正和灰度改正的优先顺序, 提出了灰度优先的距离检校模型。首先分析了脉冲式测距的主要误差源; 然后验证了加乘常数和距离改正表的存在性, 以及灰度对加乘常数的影响, 接着验证了不同距离处距离改正表的一致性; 最后提出了灰度优先的距离检校模型。为了得到不同灰阶的数据, 利用地面激光扫描仪对不同灰阶靶标板进行二维扫描, 并用不同距离的数据, 比较了不同距离检校模型的精度, 实验结果表明, 灰度优先检校模型的精度高于常数优先检校模型的精度, 距离精度提高到5 mm。同时, 灰度优先检校模型的结果不受灰度影响, 具有普适性。
Abstract
For the priority order of the multiplication constant correction and the gray correction, a gray-scale priority calibration model was proposed. Firstly, the main error sources of pulsed ranging were analyzed. Then the existence of the multiplication constant and distance correction table and the influence of gray scale on the multiplication constant were verified. Then the consistency of the distance correction table at different distances was verified. Finally, a gray-scale prionty distance calibration model was provided. In order to obtain different gray-scale data, two-dimensional scanning of different gray-scale target plates was carried out by using ground laser scanner. The accuracy of different distance calibration models was compared by using different distance data. The experimental results show that accuracy of the gray-scale priority calibration model is higher than the precision of the constant priority calibration model, and the distance accuracy is improved to 5 mm. At the same time, the result of the gray-scale priority calibration model is not affected by the gray scale and has universality.
参考文献

[1] Moritani Ryota, Kanai Satoshi. Cylinder-based simultaneous registration and model fitting of laser-scanned point clouds for accurate as-built modeling of piping system[J]. Computer -Aided Design and Applications, 2018, 10(41): 1-14 .

[2] Medi■ T, Holst C, Kuhlmann H. Towards system calibration of panoramic laser scanners from a single station[J]. Sensors, 2017, 17(32): 11-45.

[3] 徐正平, 沈宏海, 许永森. 直接测距型激光主动成像系统发展现状[J]. 中国光学, 2015, 8(1): 28-38.

    Xu Zhengping, Shen Honghai, Xu Yongsen. Review of the development of laser active imaging system with direct ranging[J]. Chinese Optics, 2015, 8(1): 28-38. (in Chinese)

[4] 徐正平, 沈宏海, 姚园. 直接测距型无扫描激光主动成像验证系统[J]. 光学 精密工程, 2016(2): 251-259.

    Xu Zhengping, Shen Honghai, Yao Yuan. Scanner less laser active imaging validating system by directly ranging[J].Optics and Precision Engineering, 2016, 24(2): 251-259. (in Chinese)

[5] 李密, 宋影松, 虞静, 等. 高精度激光脉冲测距技术[J]. 红外与激光工程, 2011, 40(8): 1469-1473.

    Li Mi, Song Yingsong, Yu Jing, et al. High precision laser pulse distance measuring technology [J]. Infrared and Laser Engineering, 2011, 40(8): 1469-1473. (in Chinese)

[6] 夏文泽, 韩绍坤, 曹京亚, 等. 激光雷达距离估计技术[J].红外与激光工程, 2016, 45(9): 0906005.

    Xia Wenze, Han Shaokun, Cao Jingya, et al. Ladar range estimation technology[J]. Infrared and Laser Engineering,2016, 45(9): 0906005. (in Chinese)

[7] 张健, 张雷, 曾飞. 机载激光3D探测成像系统的发展现状[J]. 中国光学, 2011, 4(3): 213-232.

    Zhang Jian, Zhang Lei, Zheng Fei. Development status of airborne 3D imaging lidar systems[J]. Chinese Optics, 2011, 4(3): 213-232. (in Chinese)

[8] 郭裕兰, 万建伟, 鲁敏. 激光雷达目标三维姿态估计[J].光学 精密工程, 2012, 20(4): 843-850.

    Guo Yulan, Wan Jianwei, Lu Min. Three dimensional orientation estimation for ladar target[J]. Optics and Precision Engineering, 2012, 20(4): 843-850. (in Chinese)

[9] Zhan Li, Alan H S, David L B Jupp, et al. Radiometric calibration of a dual-wavelength, full-waveform terrestrial lidar[J]. Sensors, 2016, 16(3): 313.

[10] Mazalová J, Valentová K, Vlcková L. Testing of accuracy of reflectorless distance measurement of selected Leica and Topcon total stations[J]. GeoScience Engineering, 2010, 56(1): 19-26.

[11] Briese C, Pfennigbauer M, Lehner H. Radiometric calibration of multi-wavelength airborne laser scanning data. ISPRSAnn. Photogramm[J]. Remote Sens Spat Inf Sci, 2012, I-7: 335-340.

[12] 郑德华, 沈云中, 刘春. 三维激光扫描仪及其测量误差影响因素分析[J]. 测绘工程, 2015, 14(2): 32-34.

    Zheng Dehua, Chen Yunzhong, Liu Chun. 3D laser scanner and its effect factor analysis of surveying error[J]. Engineering of Surveying and Mappping, 2015, 14(2): 32-34. (in Chinese)

[13] 刘春, 张蕴灵, 吴杭彬. 地面三维激光扫描仪的检校与精度评估[J]. 工程勘察, 2009, 13(11): 56-60.

    Liu Chun, Zhang Yunling, Wu Hangbin. Accuracy evaluation of 3D laser range scanner based on field calibration[J]. Geotechnical Investigation & Surveying, 2009, 13(11): 56-60. (in Chinese)

[14] 王留召, 韩友美, 钟若飞. 车载激光扫描仪距离测量参数标定[J]. 测绘通报, 2010, 12(1): 19-20.

    Wang Liuzhao, Han Youmei, Zhong Ruofei. The range calibration of the vehicular laser scanner[J]. Bulletin of Surveying and Mapping, 2010, 12(1): 19-20. (in Chinese)

[15] 赵松, 西勤, 刘松林. 基于回光强度的地面三维激光扫描仪测距误差模型[J]. 测绘科学, 2013, 38(3): 169-171.

    Zhao Song, Xi Qin, Liu Songlin. Model of terrestrial laser scanner range errors based on intensity of echo[J]. Science of Surveying and Mapping, 2013, 38(3): 169-171. (in Chinese)

杨书娟, 张珂殊, 邵永社. 地面激光扫描仪的灰度优先距离检校模型[J]. 红外与激光工程, 2019, 48(1): 0106007. Yang Shujuan, Zhang Keshu, Shao Yongshe. Ranging calibration model of terrestrial laser scanner based on gray level priority[J]. Infrared and Laser Engineering, 2019, 48(1): 0106007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!