光学与光电技术, 2017, 15 (3): 57, 网络出版: 2017-07-10   

仿生蛾眼抗反射微纳结构衍射特性研究

Research on Bionic Moth-Eye Antireflective Micro-Nano Structure of Diffraction Characteristics
作者单位
1 华中光电技术研究所—武汉光电国家实验室, 湖北 武汉 430223
2 长春理工大学光电工程学院, 吉林 长春 130022
摘要
通过分析仿生蛾眼抗反射阵列周期对反射率和透射率的影响,获得了波长与周期之比与反射波能量和零级透射波能量直接相关,分界线符合±1级衍射倏逝条件。在亚波长区具有低反射率和低零级透射率,而在小周期区具有低反射率和透射率。并且通过引入微结构顶面与底面直径之比圆锥度系数概念来表征微结构形状,从而能够分析圆锥形、圆台形、圆柱形仿生蛾眼微纳结构之间不同形状过渡的变化趋势,进而实现了制备微纳结构形状的误差分析。
Abstract
The relationship between the period of bionic moth-eye antireflection array and reflectivity and transmissivity is analyzed, and it can be obtained that the ratio of wavelength to period is directly related to reflected and zeroth-order transmitted wave energy, of which the dividing line accords with the first-order (±1) evanescent condition of diffraction. It characterizes low reflectivity and low zeroth-order transmissivity in the sub-wavelength region, which contrasts the low reflectivity and transmissivity in small periodic region. The ratio of the top surface to bottom surface diameter of micro-nano structure is introduced as the concept of conic coefficient to characterize the profile of the micro-nano structure for the purpose of discussing the changing trend of different shapes between conical, truncated conical and cylindrical bionic moth-eye micro-nano structure. Consequently, the error analysis of the fabrication of micro-nano structure is realized.
参考文献

[1] Bernhard C G, Miller W H. A corneal nipple pattern inilnsect compound eyes[J]. Acta Physiologica Scandinavica, 1962, 56(3): 385-386.

[2] Min W L, Jiang B, Jiang P. Bioinspired self-cleaning antireflection coatings[J]. Adv. Mater., 2008, 20(20): 3914-3918.

[3] Hiller J, Mendelsohn J D, Rubner M F. Reversibly erasable nano porousanti-reflectioncoatings from polyelectrolyte multilayers[J]. Nat. Mater., 2002, 1(1): 59-63.

[4] Chen Q, Hubbard G, Shields P A, et al. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting[J]. Applied Physics Letters, 2009, 94(26): 263118.

[5] Daniel H Rguin, G Michael Morris. Antireflection structured surfaces for the infrared spectral region[J]. Applied Optics, 1993, 32(7): 1154-1167.

[6] 曹宇, 张建军, 李天微, 等. 微晶硅锗太阳电池本征层纵向结构的优化[J]. 物理学报, 2013, 62(3): 036102.

    CAO Yu, ZHANG Jianjun, LI Tian-wei, et al. Optimization of longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell[J]. Acta Physica Sinica, 2013, 62(3): 036102.

[7] 董亭亭, 付跃刚, 陈驰, 等. 锗衬底表面圆柱形仿生蛾眼抗反射微结构的研制[J]. 光学学报, 2016, 36(5): 0522004.

    DONG Ting-ting, FU Yue-gang, CHEN Chi, et al. Study on bionic moth-eye antireflective cylindrical microstructure on germanium substrate[J]. Acta Optica Sinica, 2016, 36(5): 0522004.

[8] 张超, 张庆茂, 郭亮, 等. 非晶硅薄膜太阳能电池得紫外激光刻蚀工艺[J]. 强激光与粒子束, 2012, 24(11): 2751-2756.

    ZHANG Chao, ZHANG Qing-mao, GUO Liang, et al. Ablating process with 355nm laser for amorphous silicon thin-film solar cell[J]. High Power Laser and Particle Beams, 2012, 24(11): 2751-2756.

[9] Zhang Z, Wang Z, Wang D, et al. Periodic antireflection surface structure fabricated on silicon by four-beam laser interference lithography[J]. Journal of Laser Applications, 2014, 26(1): 012010.

[10] Sun C H, Jiang P, Jiang B. Broadband moth-eye antireflection coatings on silicon[J]. Applied Physics Letters, 2008, 92(6): 061112.

[11] 徐启远, 刘正堂, 李阳平, 等. 锗衬底红外抗反射亚波长结构的研究[J]. 光学学报, 2010, 30(6): 1745-1748.

    XU Qi-yuan, LIU Zheng-tang, LI Yang-ping, et al. Studies of infrared antireflection subwavelength structure on Ge substrate[J]. Acta Optica Sinica, 2010, 30(6): 1745-1748.

董亭亭, 陈驰, 熊涛, 耿安兵, 付跃刚. 仿生蛾眼抗反射微纳结构衍射特性研究[J]. 光学与光电技术, 2017, 15(3): 57. DONG Ting-ting, CHEN Chi, XIONG Tao, GENG An-bing, FU Yue-gang. Research on Bionic Moth-Eye Antireflective Micro-Nano Structure of Diffraction Characteristics[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2017, 15(3): 57.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!