中国激光, 2014, 41 (6): 0603001, 网络出版: 2014-05-14   

CoCrMo合金激光选区熔化成型工艺及其性能研究 下载: 507次

Research on Process and Property of CoCrMo Alloy Directly Manufactured by Selective Laser Melting
作者单位
1 华南理工大学机械与汽车工程学院, 广东 广州 510640
2 北京大学第三医院运动医学研究所, 北京 100083
摘要
对CoCrMo合金激光选区熔化(SLM)直接制造成型工艺进行了研究,以便探索使用CoCrMo材料的个性化医用产品的更优化工艺。使用华南理工大学自主研发的Di-Metal100型SLM设备,在使用满足ASTM F75要求的CoCrMo合金进行SLM增材制造过程中,对激光功率、扫描速度、扫描间距3个关键工艺参数进行了工艺验证与分析,以便获得高致密度成型工艺参数,并对此工艺参数下成型件的性能进行测试。结果显示,在激光功率为170 W,扫描间距为0.08 mm,扫描速度为500 mm/s时获得致密度为99.02%, 此时CoCrMo合金SLM直接制造样件的抗拉强度、屈服强度σ0.2以及洛氏硬度均高于ASTM F75铸造标准,延伸率略低。通过对CoCrMo合金SLM增才制造工艺的优化,可以制造出性能上能够满足医用产品指标的CoCrMo合金个性化医用产品,从而为CoCrMo合金SLM个性化直接制造应用提供重要参考。
Abstract
The process of selective laser melting (SLM) direct manufacturing based on CoCrMo alloy is studied to explore the optimized process of CoCrMo personalized medical products that are in increasing demand. SLM equipment Di-Metal100 self-developed by South China University of Technology is used. When the CoCrMo alloy satisfying the requirement of ASTM F75 is manufactured by SLM, three critical process parameters including laser power, scanning speed and scanning space are carried out process validation and analysis so that the process parameters with high relative density is obtained and through which the mechanical performance of parts manufactured is tested. The result shows that with the laser power of 170 W, scanning space of 0.08 mm and scanning speed of 500 mm/s, CoCrMo alloy samples manufactured directly by SLM with 99.02% relative density are obtained. Their tensile strength, yield strength σ0.2 and Rockwell hardness are all higher than the casting standard of ASTM F75 and their elongations are slightly lower. Through the process optimization of SLM direct manufacturing based on CoCrMo alloy, CoCrMo alloy personalized medical products meeting the target of medical product in performance can be manufactured, which provides important reference for personalized SLM direct manufacturing based on CoCrMo alloy.
参考文献

[1] C T Sims, N S Stoloff, W C Hagel. Superalloys Ⅱ[M]. New York: Willey, 1987. 135-163.

[2] A D John, L K Richard, P Robert, et al.. Cobalt Base Alloys for Biomedical Applications[M]. West Conshohocken: Astm International, 1999. 15-20.

[3] J R Davis. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys[M]. West Consbohocken: ASM International,1997. 653-654.

[4] M Niinomi. Metals for Biomedical Devices[M]. Horida: CRC Press, 2010. 355-378.

[5] Standard Speci Cation for Cast Cobalt-28 Chromium-6 Molybdenum Alloy Castings and Casting Alloy for Surgical Implants: ASTM Designation F75[C]. West Conshohocken: ASTM, 2004.

[6] Y Bing, M V Kartik, A Songtao, et al.. Differences of knee anthropometry between Chinese and white men and women[J]. J Arthroplasty, 2011, 26: 124-130.

[7] M Mahfouz, E E Abdel Fatah, L S Bowers, et al.. Three-dimensional morphology of the knee reveals ethnic differences[J]. Clin Orthop Relat Res, 2012, 470(1): 172-185.

[8] R Iorio, S Kobayashi, W L Healy, et al.. Primary posterior cruciate-retaining total knee arthroplasty: a comparison of American and Japanese cohorts[J]. J Surg Orthop Adv, 2007, 16(4): 164-170.

[9] 宋长辉, 杨永强, 叶梓恒, 等. 基于选区激光熔化快速成型的自由设计与制造进展[J]. 激光与光电子学进展, 2013, 50(8): 080026.

    Song Changhui, Yang Yongqiang, Ye Ziheng, et al.. Development of freeform design and manufacturing based on selective laser melting[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080026.

[10] R S Kircher, A M Christensen, K W Wurth. Electron beam melted (EBM) Co-Cr-Mo alloy for orthopaedic implant applications[C]. Austin: Solid Free form Fabrication, 2009. 428-436.

[11] S M Gaytan, L E Murr, D A Ramirez, et al.. A TEM study of cobalt-base alloy prototypes fabricated by EBM[J]. Materials Science and Applications, 2011, 2(5): 355-363.

[12] A Chiba, S Kurosu, Y Koizumi, et al.. Mechanical properties and microstructures of biomedical grade Co-Cr-Mo alloy produced by additive manufacturing technique using EBM method[J]. Bone & Joint Journal Orthopaedic Proceedings Supplement, 2013, 95(s15): 146-146.

[13] B Vandenbroucke, J P Kruth. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4): 196-203.

[14] Y Pupo, J Delgado, L Serenó, et al.. Scanning space analysis in selective laser melting for CoCrMo powder[J]. Procedia Engineering, 2013, 63: 370-378.

[15] K Monroy, J Delgado, J Ciurana. Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process[J]. Procedia Engineering, 2013, 63: 361-369.

[16] M Averyanova, P Bertrand, B Verquin. Manufacture of Co-Cr dental crowns and bridges by selective laser melting technology[J]. Virtual and Physical Prototyping, 2011, 6(3): 179-185.

[17] A Takaichi, T Nakamoto, N Joko, et al.. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications[J]. J Mechanical Behavior of Biomedical Materials, 2013, 21(5): 67-76.

[18] D Jevremovic, T Puskar, B Kosec, et al.. The analysis of the mechanical properties of F75 Co-Cr alloy for use in selective laser melting (SLM) manufacturing of removable partial dentures (RPD)[J]. Metalurgija, 2011, 51(2): 171-174.

[19] 王迪, 杨永强, 吴伟辉. 光纤激光选区熔化316L不锈钢工艺优化[J]. 中国激光, 2009, 36(12): 3233-3239.

    Wang Di, YangYongqiang, Wu Weihui. Process optimization for 316L stainless steel by fiber laser selective melting[J]. Chinese J Lasers, 2009, 36(12): 3233-3239.

[20] 吴伟辉, 杨永强, 王红卫, 等. 光纤激光直接快速成型316L不锈钢精密零件研究[J]. 激光技术, 2009, 33(5): 486-489.

    Wu Weihui, Yang Yongqiang, Wang Hongwei, et al.. Rearch on direct rapid manufacturing of 316L fine metal part using fiber laser[J]. Laser Technology, 2009, 33(5): 486-489.

[21] I Yadroitsev, P Bertrand, I Smurov. Parametric analysis of the selective laser melting process[J]. Applied surface science, 2007, 253(19): 8064-8069.

[22] A Simchi, H Pohl. Effects of laser sintering processing parameters on the microstructure and densification of iron powder[J]. Materials Science and Engineering: A, 2003, 359(1): 119-128.

[23] A Simchi. Direct laser sintering of metal powders: mechanism, kinetics and microstructural features[J]. Materials Science and Engineering: A, 2006, 428(1): 148-158.

[24] R H Morgan, A J Papworth, C Sutcliffe, et al.. High density net shape components by direct laser re-melting of single-phase powders[J]. Journal of Materials Science, 2002, 37(15): 3093-3100.

[25] 刘杰, 杨永强, 王迪, 等. 选区激光熔化成型悬垂结构的计算机辅助工艺参数优化[J]. 中国激光, 2012, 39(5): 0503001.

    Liu Jie, Yang Yongqiang, Wang Di, et al.. Computer-aided optimization of the process parameters for fabricating overhanging structure by selective laser melting[J]. Chinese J Lasers, 2012, 39(5): 0503001.

[26] D Wang, Y Q Yang, Y L Huang, et al.. Impact of inter-layer scan strategy on quality of direct fabrication metal parts in SLM process[J]. Laser Technology, 2010, 34(4): 447-451.

[27] P Mercelis, J P Kruth. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5): 254-264.

宋长辉, 杨永强, 王赟达, 余家阔, 麦淑珍. CoCrMo合金激光选区熔化成型工艺及其性能研究[J]. 中国激光, 2014, 41(6): 0603001. Song Changhui, Yang Yongqiang, Wang Yunda, Yu Jiakuo, Mai Shuzhen. Research on Process and Property of CoCrMo Alloy Directly Manufactured by Selective Laser Melting[J]. Chinese Journal of Lasers, 2014, 41(6): 0603001.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!