光学学报, 2008, 28 (12): 2296, 网络出版: 2008-12-17   

声速不均匀介质的光声成像重建算法

Reconstruction Algorithm of Photoacoustic Tomography with Acoustic Speed Heterogeneity
作者单位
复旦大学电子工程系, 上海 200433
摘要
为提高声速不均匀介质的光声成像精度, 提出一种基于反卷积的光声成像重建算法。本算法不需预先知道介质的声速分布。先通过探测到的光声信号构造出一个新函数, 并用不同位置探测到的光声信号间的相关性来估计空间两点间的声波传播时间, 以补偿声速的不均匀性。然后基于反卷积方法由该函数解出待测组织内的电磁波吸收分布。仿真研究结果表明, 当介质声速差异在10%以内时, 重建图像能正确反映待测目标的大小、位置和电磁波吸收系数, 算法具有良好的抗噪性能。由于生物软组织内的声速差异一般小于10%, 因此本算法是一种有效的光声成像重建算法。
Abstract
A deconvolution-based reconstruction algorithm is proposed to enhance the precision of the photoacoustic tomography (PAT) with the acoustic heterogeneity. This algorithm does not require the prior knowledge of the acoustic speed distribution. Firstly, a new function was constructed from detected photoacoustic signals, while the correlation between photoacoustic signals was employed to estimate the flight time of acoustic waves between two spatial positions and compensate the acoustic heterogeneity. Then the electromagnetic absorption distribution of the detected tissue can be reconstructed from this new function based on the deconvolution method. It is shown by simulation results that the reconstructed image can correctly indicate the size, location and electromagnetic absorption coefficient of detected objects when the acoustic speed variation is within 10%. This algorithm has a strong robustness to the noise. Since the acoustic speed variation of biological soft tissues is normally lower than 10%, this algorithm is an efficient reconstruction algorithm for the PAT.
参考文献

[1] . F. Zhang, K. Maslov, G. Stoica et al.. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nat. Biotechno., 2006, 24(7): 848-851.

[2] . J. Niederhauser, M. Jaeger, R. Lemor et al.. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo[J]. IEEE Trans. Med. Imaging, 2005, 24(4): 436-440.

[3] . Wei, S. Huang, C. Wang et al.. Photoacoustic flow measurements based on wash-in analysis of gold nanorods[J]. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2007, 54(6): 1131-1141.

[4] M. Li, J. A. Schwartz, J. Wang et al.. In vivo imaging of nanoshell extravasation from solid tumor vasculature by photoacoustic microscopy[C]. Proc. SPIE, 2007, 6437: 64370B-1~7

[5] . Guo, J. Li, H. Zmuda et al.. Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection[J]. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2007, 54(11): 2000-2010.

[6] . G. M. Kolkman, E. Hondebrink, W. Steenbergen et al.. In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor[J]. IEEE J. Sel. Top. Quantum Electron., 2003, 9(2): 343-346.

[7] . Wang, Y. Pang, G. Ku et al.. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain[J]. Nat. Biotechnol., 2003, 21(7): 803-806.

[8] . A. Kruger, P. Liu, Y. Fang et al.. Photoacoustic ultrasound (PAUS)-reconstruction tomography[J]. Med. Phys., 1995, 22(10): 1605-1609.

[9] . Xu, L. V. Wang. Time-domain reconstruction for thermoacoustic tomography in a spherical geometry[J]. IEEE Trans. Med. Imaging, 2002, 21(7): 814-822.

[10] . P. Kostli, P. C. Beard. Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response[J]. Appl. Opt., 2003, 42(10): 1899-1908.

[11] . A. Anastasio, J. Zhang, X. Pan et al.. Half-time image reconstruction in thermoacoustic tomography[J]. IEEE Trans. Med. Imaging, 2005, 24(2): 199-210.

[12] . Haltmeier, T. Schuster, O. Scherzer. Filtered backprojection for thermoacoustic computed tomography in spherical geometry[J]. Math. Meth. Appl. Sci., 2005, 28: 1919-1937.

[13] . A. Kunyansky. Explicit inversion formulae for the spherical mean Radon transform[J]. Inverse Problems, 2007, 23: 373-383.

[14] 杨迪武, 刑达, 王毅 等. 基于代数重建算法的有限角度扫描的光声成像[J]. 光学学报, 2005, 25(6): 772~776

    Yang Diwu, Xing Da, Wang Yi et al.. Limited-view scanning photoacoustic imaging based on algebraic reconstruction techniques[J]. Acta Optica Sinica, 2005, 25(6): 772~776

[15] 曾亚光, 刑达, 付洪波 等. 光声层析成像的信号处理[J]. 中国激光, 2005, 32(1): 97~100

    Zeng Yaguang, Xing Da, Fu Hongbo et al.. Signal process of photoacoustic tomography[J]. Chin. J. Lasers, 2005, 32(1): 97~100

[16] . Xu, L. V. Wang. Effects of acoustic heterogeneity in breast thermoacoustic tomography[J]. IEEE Trans. Ultrason., Ferroelect., Freq. Contr., 2003, 50(9): 1134-1146.

[17] . Jin X, L. V. Wang. Thermoacoustic tomography with correction for acoustic speed variations[J]. Phys. Med. Biol., 2006, 51: 6437-6448.

[18] M. A. Anastasio, J. Zhang, X. Pan. Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneities[C]. Proc. SPIE, 2005, 5750: 298~304

[19] J. Zhang, M. A. Anastasio. Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography[C]. Proc. SPIE, 2006, 6086: 608619-1~7

[20] . 小尺度下热声成像的反卷积重建法[J]. 航天医学与医学工程, 2008, 21(5): 420-424.

    . Reconstruction of thermoacoustic imaging for small-scale objects based on deconvolution[J]. Space Med. Med. Engng., 2008, 21(5): 420-424.

[21] S. M. Riad. The deconvolution problem: an overview[C]. Proc. IEEE, 1986, 74(1): 82~85

[22] . Bennia, S. M. Riad. An optimization technique for iterative frequency-domain deconvolution[J]. IEEE Trans. Instrum. Meas., 1990, 39(2): 358-362.

[23] . Huang, C. Liao, C. Wei et al.. Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method[J]. J. Acoust. Soc. Am., 2005, 117(5): 2795-2801.

张弛, 汪源源. 声速不均匀介质的光声成像重建算法[J]. 光学学报, 2008, 28(12): 2296. Zhang Chi, Wang Yuanyuan. Reconstruction Algorithm of Photoacoustic Tomography with Acoustic Speed Heterogeneity[J]. Acta Optica Sinica, 2008, 28(12): 2296.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!