红外与毫米波学报, 2015, 34 (4): 385, 网络出版: 2015-10-22  

Dark current suppression in HOT LWIR HgCdTe heterostructures operating in non-equilibrium mode

Dark current suppression in HOT LWIR HgCdTe heterostructures operating in non-equilibrium mode
作者单位
1 Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
2 Vigo System S.A., 129/133 Poznańska Str., 05-850 Oz·arów Mazowiecki, Poland
摘要
Abstract
Typically, infrared detectors require cryogenic cooling to limit dark current which is directly dependent on Auger generation-recombination mechanism and highly influential in HgCdTe-narrow band gap material. The Auger suppressed architectures have an advantage over conventional detectors allowing operation at elevated temperatures >200 K. Architecture with combination of exclusion and extraction heterojunctions has been proposed to lower Auger contribution. The paper presents a new long-wave (≈ 10 μm) infrared HgCdTe architecture with graded gap/doping interfaces and extra barrier located in exclusion heterojunction to suppress dark current for high operating temperature conditions. Proper barrier implementation reduces dark current by more than 20 A/cm2 for room temperature operation.
参考文献

[1] Rogalski A, Infrared detectors[M]. CRC Press, Boca Raton, 2011.

[2] Ashley T, Elliott C T. Non-equilibrium mode of operation for infrared detection [J]. Electron. Lett., 1985, 21: 451-452.

[3] Jaksic Z, Djuric Z. Extraction photodiodes with Auger suppression for all-weather free-space optical communication [J]. Electronics, 2004, 8: 30-32.

[4] Emelie P Y, Philips J D, Velicu S, et al. Modeling and design considerations of HgCdTe infrared photodiodes under nonequilibrium operation [J]. J. Electron. Mater., 2007, 36: 846-851.

[5] Emelie P Y, Velicu S, Grein C H, et al. Modeling of LWIR HgCdTe Auger-suppressed infrared photodiodes under non-equilibrium operation [J]. J. Electron. Mater.,2008, 37: 1362-1368.

[6] Velicu S, Grein C H, Emelie P Y, et al. MWIR and LWIR HgCdTe infrared detectors operated with reduced cooling requirements [J]. J. Electron. Mater., 2010, 39: 873-881.

[7] Itsuno A M, Philips J D, Velicu S. Predicted performance improvement of Auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors [J]. IEEE Trans. Electron Dev., 2011, 58: 501-507.

[8] Kocer H. Numerical investigation of Auger contributed performance loss in long wavelength infrared HgCdTe photodiodes [J]. Solid-State Electron., 2013, 87: 58-63.

[9] Norton P. HgCdTe infrared detectors [J]. Opto-Electron. Rev., 2002, 10: 159-174.

[10] Rogalski A. HgCdTe infrared detector material: history, status and outlook [J]. Rep. Prog. Phys., 2005, 68: 2267-2336.

[11] Piotrowski A, Kos K, Gawron W, et al. Uncooled or minimally cooled 10 μm photodetector with subnanosecond response time [J]. Proc. SPIE, 2007, 6542: 65421B.

[12] Piotrowski A, Piotrowski J, Gawron W, et al. Extension of usable spectral range of Peltier cooled photodetectors [J]. Acta Physica Polonica A, 2009, 116: 52-55.

[13] Stanaszek D, Piotrowski J, Piotrowski A, et al. Mid and long infrared detection modules for picosecond range measurements [J]. Proc. SPIE, 2009, 7482: 74820M.

[14] Piotrowski J, Gawron W, Orman Z, et al. Dark currents, responsivity and response time in graded gap HgCdTe structures [J]. Proc. SPIE, 2010, 7660: 766031.

[15] Piotrowski A, Madejczyk P, Gawron W, et al. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors [J]. Infrared Physics & Technol., 2007, 49: 173-182.

[16] Madejczyk P, Gawron W, Martyniuk P, Kbowski A, Piotrowski A, Pusz W, Kowalewski A, Piotrowski J, Rogalski A. MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors [J]. Semicond. Sci. Technol., 2013, 28(10): 105017.

[17] APSYS Macro/User’s Manual ver. 2014, Crosslight Software, Inc, 2014.

[18] Casselman T N, Petersen P E. A comparison of the dominant Auger transitions in p-type (HgCd)Te [J]. Solid State Commun., 1980, 33: 615-619.

[19] Hurkx G A, Klaassen D B M, Knuvers M P G. A new recombination model for device simulation including tunneling [J]. IEEE Trans. Electron Devices, 1992, 39(2): 331.

[20] Hansen G L, Schmidt J L, Casselman T N. Energy gap versus alloy composition and temperature in Hg1-xCdxTe [J]. J. Appl. Phys., 1982, 53: 7099.

[21] Scott W. Electron Mobility in Hg1-xCdxTe [J]. J. Appl. Phys., 1972, 43: 1055-1062.

[22] Bhan R K, Dhar V. Carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors [J]. Semicond. Sci. Technol., 2004, 19: 413-416.

[23] Gupta S, Bhan R K, Dhar V. Unified carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors covering SWIR, MWIR and LWIR bands [J]. Infrared Phys. & Technol., 2008, 51: 259-262.

[24] Quan Z J, Chen G B, Sun L Z, et al. Effects of carrier degeneracy and conduction band non-parabolicity on the simulation of HgCdTe photovoltaic devices [J]. Infrared Phys. & Technol., 2007, 50: 1-8.

[25] Wang J, Chen X, Hu W, et al. Temperature dependence characteristics of dark current for arsenic doped LWIR HgCdTe detectors [J]. Infrared Phys. & Technol., 2013, 61: 157-161.

[26] Quan Z J, Chen X S, Hu W D, et al. Modeling of dark characteristics for long-wavelength HgCdTe photodiode [J]. Opt Quant Electron, 2007, 38: 1107-1113.

[27] Kocer H, Arslan Y, Besikci C. Numerical analysis of long wavelength infrared HgCdTe photodiodes [J]. Infrared Phys. & Technol., 2012, 55: 49-55.

Martyniuk P, Gawron W, Pawluczyk J, Kblowski A, Madejczyk P, Rogalski A. Dark current suppression in HOT LWIR HgCdTe heterostructures operating in non-equilibrium mode[J]. 红外与毫米波学报, 2015, 34(4): 385. Martyniuk P, Gawron W, Pawluczyk J, Kblowski A, Madejczyk P, Rogalski A. Dark current suppression in HOT LWIR HgCdTe heterostructures operating in non-equilibrium mode[J]. Journal of Infrared and Millimeter Waves, 2015, 34(4): 385.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!