强激光与粒子束, 2015, 27 (10): 103204, 网络出版: 2015-11-30   

航天器背面接地介质材料等离子体充电研究

Research on surface charging of back grounded dielectric material of spacecraft
作者单位
1 石家庄铁道大学 电气与电子工程学院, 石家庄 050035
2 军械工程学院 静电与电磁防护研究所, 石家庄 050003
摘要
处于等离子体环境中的航天器的介质材料受到带电粒子的作用,表面将产生电位。对背面接地的介质材料,上表面将与接地背面形成电势差。当电势差达到一定阈值时将产生放电,表面充电电位对充放电效应影响至关重要。综合考虑等离子体中粒子的质量、温度及密度,介质材料的二次电子效应,体电流泄漏以及介质材料的运行速度等因素,基于气体动理论,利用粒子的麦克斯韦速度分布函数理论推导得出等离子体环境中背面接地介质材料表面充电电位一般表达式。讨论了地球同步轨道环境下,表面电位与等离子体环境及材料表面电阻等各个参数的关系,总结出等离子环境背面接地介质材料表面充电规律,为航天器介质材料静电防护设计提供一定的理论基础。
Abstract
As a result of interaction between the spacecraft and the charged particles in plasma environment,the surface charging inevitability occurs. On the back grounded dielectric material,there exists a potential difference between the upper surface and the grounded back surface. The surface potential plays an important role in charging and discharging effects. Discharging occurs if the generated electric fields exceed the breakdown threshold. Taking a comprehensive consideration of the plasma particle’s mass,temperature and density,the secondary electron effects of the dielectric materials,body leakage current and the flight speed,a general expression for surface potential of back grounded dielectric material in plasma environment is derived using the formula of particle’s Maxwellian velocity distribution. Consequently,the dependences of the surface potential on each of the parameters are discussed concerning the geosynchronous orbit (GEO) environment,and some useful rules are summarized for the surface charging of back grounded dielectric material immersed in plasma. The method introduced here can facilitate the risk assessment for spacecraft surface charging and provide certain theoretical basis for spacecraft charging protection.
参考文献

[1] 黄本诚,童靖宇. 空间环境工程学[M]. 北京: 中国科学技术出版社,2010.

    Huang Bencheng,Tong Jingyu. Space environment engineering. Beijing: Chinese Science and Technology Press,2010

[2] 曹鹤飞,刘尚合,孙永卫,等. 等离子体环境非偏置固体表面带电研究[J]. 物理学报,2013,62: 119401.

    Cao Hefei,Liu Shanghe,Sun Yongwei,et al. Unbiased solid surface charging research in plasma environment. Acta physica Sinica,2013,62: 119401

[3] 易忠,王松,唐小金,等. 不同温度下复杂介质结构内带电充电规律仿真分析[J]. 物理学报,2015,64:125201.

    Yi Zhong,Wang Song,Tang Xiao Jin. et al. Computer simulation on temperature-dependent internal charging of complex dielectric structure. Acta Physica Sinica,2015,64: 125201

[4] 王松,易忠,唐小金,等. 地球同步轨道外露介质深层带电仿真分析[J]. 高电压技术,2015,41(2): 687-692.

    Wang Song,Yi Zhong,Tang Xiaojin,et al. Analysis of exposed dielectric bulk charging in geosynchronous orbit environment via computer simulation. High Voltage Engineering,2015,41(2): 687-692

[5] 沈炎龙,于力,栾昆鹏,等.表面放电等离子体产生冲击波特性[J]. 强激光与粒子束,2015,27: 061008.

    Shen Yanlong,Yu Li,Luan Kunpeng,et al. Investigation on properties of surface discharge plasma induced shockwave. High Power Laser and Particle Beams,2015,27: 061008

[6] Lai S L. A survey of spacecraft charging events[C]// AIAA 36th Aerospace Sciences Meeting Reno. 1998,1042: 1-6

[7] 童靖宇,孙立臣,贾瑞金,等. 空间等离子体环境模拟与地面试验技术[J]. 真空科学与技术学报,2008,28(3): 203-207.

    Tong Jingyu,Sun Lichen,Jia Ruijin,et al. Experimental techniques in simulated space plasma environment on ground. Chinese Journal of Vacuum Science and Technology,2008,28(3): 203-207

[8] Tajmar M. Electric propulsion plasma simulations and influence on spacecraft charging[J]. Journal of Spacecraft and Rockets,2002,39(6): 886-893

[9] 盛丽艳,蔡震波. GEO卫星表面充电相对电位的工程分析[J]. 航天器工程,2007,16(6): 93-97.

    Sheng Liyan,Cai Zhenbo,Differential potential analysis of GEO satellite surface charging. Spacecraft Engineering,2007,16(6): 93-97

[10] Kim H J,Lee J J,Rhee J G,et al. Spacecraft charging for microsatellite KITSAT-3[J]. Journal of Spacecraft and Rockets,2003,40(6): 875-881

[11] Katz I,Davis V A,Snyder D B. Mechanism for spacecraft charging initiated destruction of solar arrays in GEO[C]//AIAA 36th Aerospace Sciences Meeting Reno. 1998,1002: 1-5

[12] Lai S T. A critical overview on spacecraft charging mitigation methods[J]. IEEE Trans on Plasma Science,2003,31(6): 1118-1124

[13] 曹鹤飞,刘尚合,孙永卫,等. 等离子体环境下孤立导体表面充电时域特性研究[J]. 物理学报,2013,62:149401.

    Cao Hefei,Liu Shanghe,Sun Yongwei,et al. Characteristics plasma environment isolated conductor surface charging time domain. Acta Physica Sinica,2013,62:149401

[14] 刘尚合,魏光辉,刘直承,等. 静电理论与防护[M]. 北京:兵器工业出版社,1999.

    Liu Shanghe,Wei Guanghui,Liu Zhicheng,et al. Theory of electrostatic and protection. Beijing: Weapons Industry Press,1999

[15] 杨昉,师立勤,刘四清,等. 低轨道航天器的表面充电模拟[J]. 空间科学学报,2011,31(4): 509-513.

    Yang Fang,Shi Liqin,Liu Siqing,et al. Surface charging simulation of LEO spacecraft. Chinese Journal Space Science,2011,31(4): 509-513

曹鹤飞, 孙永卫, 原青云, 刘浩, 王松. 航天器背面接地介质材料等离子体充电研究[J]. 强激光与粒子束, 2015, 27(10): 103204. Cao Hefei1, Sun Yongwei, Yuan Qingyun, Liu Hao, Wang Song. Research on surface charging of back grounded dielectric material of spacecraft[J]. High Power Laser and Particle Beams, 2015, 27(10): 103204.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!