半导体光电, 2013, 34 (6): 943, 网络出版: 2014-01-02  

导带不连续性对InGaAsP/InGaAs UTCPD带宽的影响

Impacts of the Conduction Band Discontinuity on Bandwidth of HighSpeed InGaAsP/InGaAs Unitravelingcarrier Photodetector
作者单位
电子科技大学 光电信息学院, 成都 610054
摘要
研究了导带不连续性对InGaAsP/InGaAs单行载流子高速光探测器(UTCPD)的3dB带宽的影响。研究结果表明,由于导带不连续性的存在,使得3dB带宽降低。导带不连续性越大,3dB带宽越低。通过增加隧穿系数、收集层厚度、收集层掺杂浓度和减小吸收层掺杂浓度可以在一定程度上消除导带不连续性带来的不利影响。研究结果还表明,增加隧穿系数、收集层厚度和减小吸收层掺杂浓度这三种方法在消除导带不连续性不利影响的同时又有各自的缺点,而适当增加收集层掺杂浓度是最为有效的一种方式。该研究结果可以为UTCPD的设计提供理论指导,特别是采用UTC结构的波导型光电二极管。
Abstract
The impacts of conduction band discontinuity on 3dBbandwidth of a highspeed InGaAsP/ InGaAs unitravelingcarrier photodetector were studied. The results show that the 3dBbandwidth is reduced due to the conduction band discontinuity. Greater discontinuity causes more 3dBbandwidth reduction. Increasing tunneling effect, collection layer thickness, doping concentration in the collection layer, and reducing doping concentration in the absorption layer can slow down the 3dBbandwidth reduction to some extent. The study reveals that the three methods also have their own disadvantages. According to the results, appropriately increasing the doping concentration of the collection layer is the most efficient way. The results provide suggestions for designing UTCPDs, especially for waveguide photodiodes with UTC structure.
参考文献

[1] Ishibashi T,Furuta T, Fushimi H, et al. InP/InGaAs unitravelingcarrier photodiodes[J]. IEICE Trans. Elelctron., 2000, 83(6): 938-948.

[2] Li N,Li X, Demiguel S, et al. Highsaturationcurrent chargecompensated InGaAsInP unitravelingcarrier photodiode[J]. IEEE Photon. Techno1. Lett., 2004, 16(3):864-866.

[3] Chtioui M,Carpentier D, Bernard S, et al. Thick absorption layer unitravelingcarrier photodiodes with high responsivity, high speed, and high saturation power[J]. IEEE Photon. Techno1. Lett., 2009, 21(7):429-431.

[4] Draa M N,Bloch J, Chen D, et al. Novel directional coupled waveguide photodiodeconcept and preliminary results[J]. Opt. Express, 2010, 18(17):17729-17735.

[5] Li Z,Pan H, Chen H, et al. Highsaturationcurrent modified unitravelingcarrier photodiode with cliff layer[J]. IEEE J. Quantum Electron., 2010, 46(5):626-632.

[6] Shi T,Xiong B, Sun C, et al. Backtoback UTCPDs with high responsivity high saturation current and wide bandwidth[J]. IEEE Photon. Techno1. Lett., 2013, 25(2):136-139.

[7] 朱浩波,毛陆虹, 杨展, 等. 单向载流子传输光电探测器模拟[J]. 半导体学报, 2006, 27(11):2019-2024.

[8] 郭剑川,左玉华, 张云, 等. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究[J]. 物理学报, 2010, 59(7):4524-4529.

[9] 李国余,张冶金, 李小健, 等. 考虑速度过冲的单载流子光探测器特性[J]. 半导体光电, 2010, 31(3):349-352.

[10] 张岭梓,左玉华, 曹权, 等. 单载流子光电探测器的高速及高饱和功率的研究[J]. 物理学报, 2012, 61(13):138501.

[11] Guo Liqing,Huang Yongqing, Duan Xiaofeng, et al. Highspeed mofified unitravelingcarrier photodiode with a new absorber design[J]. Chin. Opt. Lett., 2012, 10(Suppl.): S12301.

[12] Srivastva S.Simulation study of InPbased unitraveling carrier photodiode[D]. Cincinnati: University of Cincinnati, 2003: 45,152-159.

[13] Jun D H,Jang J H, Adesida I, et al. Improved efficiencybandwith product of modified unitravelingcarrier photodiode structure using an undoped photoabsorption layer[J]. Jpn. J. Appl. Phys., 2006, 45(4B): 3475-3478.

[14] Ishibashi T,Kodama S, Shimizu N, et al. Highspeed response of unitravelingcarrier photodiodes[J]. Jpn. J. Appl. Phys., 1997, 36(10): 6263-6268.

[15] Shimizu N,Watanabe N, Furuta T, et al. Electron diffusivity in pInGaAs determined from the pulse response of InP/InGaAs unitravelingcarrier photodiodes[J]. Appl. Phys. Lett., 2000, 76(9): 1191-1193.

[16] Frimel S M,Roenker K P. A thermionicfielddiffusion model for npn bipolar heterjunction phototransistors[J]. J. Appl. Phys., 1997, 82 (3): 1427-1437.

[17] Windhorn T H,Cook L W, Stillman G E. The electron velocityfield characteristic for nIn0.53Ga0.47As at 300K[J]. IEEE Electron Device Lett., 1982, ELD3(1): 18-20.

[18] Ishibashi T,Furuta T, Fushimi H, et al. Photoresponse characteristics of unitravelingcarrier photodiodes[J]. Proc. SPIE, 2001, 4283: 469-479.

[19] Marsh J H,Houston P A, Robson P N. Gallium Arsenide and Related Compounds[R]. Bristol: Institute of Physics, 1981: 621.

[20] Adachi S.Physical Properties of Ⅲ-Ⅴ Semiconductor Compounds: InP, InAs,GaAs, GaP, InGaAs and InGaAsP[M]. New York: Wiley Interscience, 1992: 359-362.

[21] Caughey D M,Thomas R E. Carrier mobilities in silicon empirically related to doping and field[J]. Proc. IEEE, 1967, 55(12): 2192-2193.

[22] Shimizu N,Watanabe N, Furuta T, et a1. InPInGaAs unitravelingcarrier photodiode with improved 3dB bandwidth of over 150GHz[J]. IEEE Photon. Techno1. Lett., 1998, 10(3): 412-414.

[23] Williams K J,Esman R D. Design considerations for highcurrent photodetectors[J]. J. Lightwave Technol., 1999, 17(8): 1443-1454.

陈代尧, 余学才, 汪平河, 刘永. 导带不连续性对InGaAsP/InGaAs UTCPD带宽的影响[J]. 半导体光电, 2013, 34(6): 943. CHEN Daiyao, YU Xuecai, WANG Pinghe, LIU Yong. Impacts of the Conduction Band Discontinuity on Bandwidth of HighSpeed InGaAsP/InGaAs Unitravelingcarrier Photodetector[J]. Semiconductor Optoelectronics, 2013, 34(6): 943.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!