激光与光电子学进展, 2016, 53 (9): 091602, 网络出版: 2016-09-14  

内建电场作用下纤锌矿ZnO/MgxZn1-xO量子阱中束缚极化子结合能和极化子能移随组分x的变化规律

Binding Energy of Bound Polaron and the Polaron Shift as the Functions of Composition x in Wurtzite ZnO/MgxZn1-xO Quantum Well Under the Built-in Electric Field
作者单位
内蒙古师范大学物理与电子信息学院功能材料物理与化学内蒙古自治区重点实验室, 内蒙古 呼和浩特 010022
摘要
用改进的Lee-Low-Pines (LLP) 变分理论讨论了纤锌矿结构的ZnO/MgxZn1-xO量子阱体系中内建电场对束缚极化子结合能和极化子能移的影响,数值研究了基态能量和结合能、不同支光学声子对能量和结合能的贡献随Mg组分x变化的规律。计算中计入了体系的介电常数、电子的带有效质量和不同支光学声子频率等参数的各向异性,并同时考虑了长波光学声子与电子和杂质中心的相互作用。结果显示,该体系中,内建电场对结合能和极化子能移的影响显著,并且不同支光学声子对能量和结合能的贡献受内建电场的影响程度有所不同。内建电场增大了声子对能量的总贡献,而降低了声子对结合能的总贡献。在内建电场作用下,能量和结合能随x增大而急剧减小,而没有内建电场时,变化相对缓慢。计算结果还说明,组分x变大时,无论是否考虑内建电场,界面和定域声子对能量和结合能的贡献变大,半空间声子贡献变小,声子对能量的总贡献变大。而声子对结合能的总贡献则要视是否考虑内建电场而不同:有内建电场时变大,无内建电场时变小。同闪锌矿结构的GaAs/AlxGa1-xAs量子阱相比,纤锌矿ZnO/MgxZn1-xO量子阱体系中光学声子对极化子能量和结合能的影响更大,极化子能移更明显。
Abstract
The influence of the built-in electric field on bound polaron binding energy and the polaron shift in a wurtzite ZnO/MgxZn1-xO quantum well are investigated using the improved Lee-Low-Pines (LLP) variational theory. The ground-state energy and binding energy, the contributions from different branches of optical phonons to the energy and the binding energy are given as the functions of composition x. The anisotropic properties of dielectric constant, electron band mass, different branches of optical phonons frequencies, the optical phonon-electron and the impurity center interaction are considered in the numerical calculations. The results show that the influence of the built-in electric field on the binding energy and polaron shift is obvious, and the degree of the influence of the built-in electric field for the contributions of different phonon modes is different. The built-in electric field increases the total phonon contribution to the energy, but it significantly reduces the total phonon contribution to the binding energy. The binding energy with the built-in electric field rapidly decreases as increasing composition x, but the binding energy without the built-in electric field decreases slightly. The result also show that when increasing the composition x, the contributions of interface and confined phonons to the energy and the binding energy with and without the built-in electric field increase, the contributions of half space phonon reduce, and the total contributions of phonons to the energy increase. But the total contributions of phonons to the binding energy with and without the built-in electric field are different. The total contributions with the built-in electric field increase, while the total contributions without the built-in electric field decrease. In comparison with the zinc blende GaAs/AlxGa1-xAs quantum wells, the influence of optical phonons on the energy and the binding energy of bound polaron in a wurtzite ZnO/MgxZn1-xO quantum well is larger, and polaron shift is more obvious.
参考文献

[1] 宿世臣, 吕有明, 梅霆. m面蓝宝石上ZnO/ZnMgO多量子阱的制备及发光特性研究[J]. 物理学报, 2011, 60(9): 096801.

    Su Shichen, Lü Youming, Mei Ting. Fabrication and optical properties of ZnO/ZnMgO multiple quantum wells on m-sapphire substrates[J]. Acta Physica Sinica, 2011, 60(9): 096801.

[2] Ozgür , Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and devices[J]. J Appl Phys, 2005, 98(4): 041301.

[3] Bagnall D M, Chen Y F, Zhu Z, et al. High temperature excitonic stimulated emission from ZnO epitaxial layers[J]. Appl Phys Lett, 1998, 73(8): 1038-1040.

[4] 刘红霞, 周圣明, 李抒智, 等. 柱状ZnO阵列薄膜的生长及其发光特性[J]. 物理学报, 2006, 55(3): 1398-1401.

    Liu Hongxia, Zhou Shengming, Li Shuzhi, et al. Growth of ZnO microrod array films and their optical properties[J]. Acta Physica Sinica, 2006, 55(3): 1398-1401.

[5] 和晓晓, 王文军, 李淑红, 等. ZnO基透明导电薄膜的制备与特性研究[J]. 中国激光, 2014, 41(6): 0607001.

    He Xiaoxiao, Wang Wenjun, Li Shuhong, et al. Design and properties analogy of ZnO-based multilayer transparent conducting film[J]. Chinese J Lasers, 2014, 41(6): 0607001.

[6] Lee B C, Kim K V, Stroscio M A, et al. Electron-optical-phonon scattering in wurtzite crystals[J]. Phys Rev B, 1997, 56(3): 997-1000.

[7] Makino T, Segawa Y, Kawasaki M, et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films[J]. Appl Phys Lett, 2001, 78(9): 1237-1239.

[8] Makino T, Tamura K, Chia C H, et al. Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Mg0.27Zn0.73O quantum wells[J]. Appl Phys Lett, 2002, 81(13): 2355-2357.

[9] Fan W J, Xia J B, Agus P A, et al. Band parameters and electronic structures of wurtzite ZnO and ZnO/MgZnO quantum wells[J]. J Appl Phys, 2006, 99(1): 013702.

[10] Coleman V A, Buda M, Tan H H, et al. Rapid communication: Observation of blue shifts in ZnO/ZnMgO multiple quantum well structures byion-implantation induced intermixing[J]. Semicond Sci Technol, 2006, 21(3): L25- L28.

[11] Furno E, Chiaria S, Penna M, et al. Electronic and optical properties of MgxZn1-xO and BexZn1-xO quantum wells[J]. J Elect Mater, 2010, 39(7): 936-944.

[12] 蒋建彗, 吴孔平, 鲁开林, 等. 中间带对ZnO/ZnTe光伏太阳能电池性能的影响[J]. 光学学报, 2015, 35(9): 0916003.

    Jiang Jianhui, Wu Kongping, Lu Kailin, et al. Effect of intermediate-band on the ZnO/ZnTe photovoltaic solar cell[J]. Acta Optica Sinica, 2015, 35(9): 0916003.

[13] 葛林, 徐建萍, 张晓松, 等. 全无机ZnO纳米棒/SiO2电致发光器件的研究[J]. 光学学报, 2013, 33(8): 0823004.

    Ge Lin, Xu Jianping, Zhang Xiaosong, et al. Study on all-inorganic light emitting devices based on ZnO nanorods with modification of SiO2[J]. Acta Optica Sinica, 2013, 33(8): 0823004.

[14] Coli G, Bajaj K K. Excitonic transitions in ZnO/MgZnO quantum well Heterostructures[J]. Appl Phys Lett, 2001, 78(19): 2861-2863.

[15] Fan W J, Abiyasa A P, Tan S T, et al. Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well[J]. J Cryst Growth, 2006, 287(1): 28-33.

[16] Ahn D, Park S H, Park E H, et al. Optical gain and luminescence of a ZnO-MgZnO quantum well[J]. IEEE Photonics Technology Letters, 2006, 18(2): 349-351.

[17] Zeng Z P, Wei S Y, Wei J B, et al. Hydrogenic impurity states in wurtzite ZnO/MgZnO quantum dot[J]. Mod Phys Lett B, 2010, 24(28): 2793-2801.

[18] Bretagnon T, Lefebvre P, Guillet T, et al. Barrier composition dependence of the internal electric field in ZnO/Zn1-xMgxO quantum wells[J]. Appl Phys Lett, 2007, 90(20): 201912.

[19] Park S H. Exciton binding energies in wurtzite ZnO/MgZnO quantum wells with spontaneous and piezoelectric polarizations[J]. J Korean Phys So, 2007, 51(4): 1404-1408.

[20] Stlzel M, Kupper J, Brandt M, et al. Electronic and optical properties of ZnO/(Mg,Zn)O quantum wells with and without a distinct quantum-confined Stark effect [J]. J Appl Phys, 2012, 111(6): 063701.

[21] Wang L, Ma J G, Xu H Y. Anisotropic strained cubic MgZnO/MgO multiple-quantum-well nanorods: Growths and optical properties[J]. Appl Phys Lett, 2013, 102(3): 031905.

[22] Su S C, Zhu H, Zhang L X, et al. Low-threshold lasing action in an asymmetric double ZnO/ZnMgO quantum well structure[J]. Appl Phys Lett, 2013, 103(13): 131104.

[23] Puls J, Sadofev S, Schafer P, et al. Optical in-plane anisotropy of ZnO/(Zn,Mg)O quantum wells grown on a-plane sapphire: Implications for optical spin control[J]. Phys Rev B, 2014, 89(8): 081301.

[24] Lee B C, Kim K W, Stroscio M A, et al. Optical-phonon confinement and scattering in wurtzite heterostructures[J]. Phys Rev B, 1998, 58(8): 4860-4865.

[25] Komirenko S M, Kim K W, Stroscio M A, et al. Dispersion of polar optical phonons in wurtzite quantum wells[J]. Phys Rev B, 1999, 59(7): 5013-5020.

[26] Shi J J. Interface optical-phonon modes and electron-interface-phonon interactions in wurtzite GaN/AIN quantum wells[J]. Phys Rev B, 2003, 68(16): 165335.

[27] Shi J J, Chu X L, Goldys E M. Propagating optical-phonon modes and their electron phonon interaction in wurtzite GaN/AlxGa1-xN quantum wells[J]. Phys Rev B, 2004, 70(11): 115318.

[28] Li L, Liu D, Shi J J. Electron quasi-confined-optical-phonon interactions in wurtzite GaN/AlN quantum wells[J]. Eur Phys J B, 2005, 44(4): 401-413.

[29] Zhao F Q, Zhang M, Bai J H. Effects of electron-optical phonon interactions on the polaron energy in a wurtzite ZnO/MxZn1-xO quantum well[J]. Chin Phys B, 2015, 24(9): 097105.

[30] Zhao F Q, Guo Z Z. Effects of the built-in electric field on polaron effects in a wurtzite ZnO/MgxZn1-xO quantum well[J]. J Appl Phys, 2015, 118(19): 195704.

[31] Fan X F, Sun H D, Shen Z X, et al. A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure AxZn1-xO alloys (A=Ca, Cd, Mg)[J]. J Phys Condens Matter, 2008, 20(23): 235221.

[32] Morhain C, Bretagnon T, Lefebvre P, et al. Internal electric field in wurtzite ZnO/ Zn0.78Mg0.22O quantum wells[J]. Phys Rev B, 2005, 72(24): 241305.

赵凤岐, 潘虹宇. 内建电场作用下纤锌矿ZnO/MgxZn1-xO量子阱中束缚极化子结合能和极化子能移随组分x的变化规律[J]. 激光与光电子学进展, 2016, 53(9): 091602. Zhao Fengqi, Pan Hongyu. Binding Energy of Bound Polaron and the Polaron Shift as the Functions of Composition x in Wurtzite ZnO/MgxZn1-xO Quantum Well Under the Built-in Electric Field[J]. Laser & Optoelectronics Progress, 2016, 53(9): 091602.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!