中国激光, 2018, 45 (3): 0307004, 网络出版: 2018-03-06  

光响应纳米基因载体的研究进展 下载: 1386次特邀综述

Research Progress of Photo-Responsive Nano-Carrier for Gene
作者单位
福建医科大学孟超肝胆医院, 福建 福州 350025
引用该论文

李炯, 刘小龙, 吴名. 光响应纳米基因载体的研究进展[J]. 中国激光, 2018, 45(3): 0307004.

Li Jiong, Liu Xiaolong, Wu Ming. Research Progress of Photo-Responsive Nano-Carrier for Gene[J]. Chinese Journal of Lasers, 2018, 45(3): 0307004.

参考文献

[1] Niidome T, Huang L. Gene therapy progress and prospects: Nonviral vectors[J]. Gene Therapy, 2002, 9(24): 1647-1652.

[2] Shim M S, Kwon Y J. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications[J]. Advanced Drug Delivery Reviews, 2012, 64(11): 1046-1059.

[3] Naldini L. Gene therapy returns to centre stage[J]. Nature, 2015, 526(7573): 351-360.

[4] Luo D, Saltzman W M. Synthetic DNA delivery systems[J]. Nature Biotechnology, 2000, 18(1): 33-37.

[5] Karimi M, Ghasemi A, Sahandi Zangabad P, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems[J]. Chemical Society Reviews, 2016, 45(5): 1457-1501.

[6] Zhang L M, Zheng W F, Tang R B, et al. Gene regulation with carbon-based siRNA conjugates for cancer therapy[J]. Biomaterials, 2016, 104: 269-278.

[7] Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers[J]. Advanced Drug Delivery Reviews, 2012, 64(11): 1005-1020.

[8] Zhao Y. Light-responsive block copolymer micelles[J]. Macromolecules, 2012, 45(9): 3647-3657.

[9] Zintchenko A, Ogris M, Wagner E. Temperature dependent gene expression induced by PNIPAM-based copolymers: Potential of hyperthermia in gene transfer[J]. Bioconjugate Chemistry, 2006, 17(3): 766-772.

[10] McKenzie D L, Kwok K Y, Rice K G. A potent new class of reductively activated peptide gene delivery agents[J]. The Journal of Biological Chemistry, 2000, 275(14): 9970-9977.

[11] Miyata K, Kakizawa Y, Nishiyama N, et al. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression[J]. Journal of the American Chemical Society, 2004, 126(8): 2355-2361.

[12] Christiansen J P, French B A, Klibanov A L, et al. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles[J]. Ultrasound in Medicine & Biology, 2003, 29(12): 1759-1767.

[13] Kim Y H, Park J H, Lee M, et al. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier[J]. Journal of Controlled Release, 2005, 103(1): 209-219.

[14] Lee S H, Choi S H, Kim S H, et al. Thermally sensitive cationic polymer nanocapsules for specific cytosolic delivery and efficient gene silencing of siRNA: swelling induced physical disruption of endosome by cold shock[J]. Journal of Controlled Release, 2008, 125(1): 25-32.

[15] Lin Y L, Jiang G H, Birrell L K, et al. Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids[J]. Biomaterials, 2010, 31(27): 7150-7166.

[16] Wang C, Zhang G Y, Liu G H, et al. Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin[J]. Journal of Controlled Release, 2017, 259: 149-159.

[17] Lee H I, Wu W, Oh J K, et al. Light-induced reversible formation of polymeric micelles[J]. Angewandte Chemie International Edition in English, 2007, 46(14): 2453-2457.

[18] Lin L, Yan Z, Gu J, et al. UV-responsive behavior of azopyridine-containing diblock copolymeric vesicles: Photoinduced fusion, disintegration and rearrangement[J]. Macromolecular Rapid Communications, 2009, 30(13): 1089-1093.

[19] Wang G, Tong X, Zhao Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates[J]. Macromolecules, 2004, 37(24): 8911-8917.

[20] Jiang X G, Lavender C A, Woodcock J W, et al. Multiple micellization and dissociation transitions of thermo- and light-sensitive poly (ethylene oxide)-b-poly (ethoxytri (ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) in water[J]. Macromolecules, 2008, 41(7): 2632-2643.

[21] Liu Y C. Le Ny A L, Schmidt J, et al. Photo-assisted gene delivery using light-responsive catanionic vesicles[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2009, 25(10): 5713-5724.

[22] Tong X, Wang G, Soldera A, et al. How can azobenzene block copolymer vesicles be dissociated and reformed by light?[J]. The Journal of Physical Chemistry. B, 2005, 109(43): 20281-20287.

[23] Zheng J, Nie Y H, Yang S, et al. Remote-controlled release of DNA in living cells via simultaneous light and host-guest mediations[J]. Analytical Chemistry, 2014, 86(20): 10208-10214.

[24] Nagasaki T, Atarashi K, Makino K, et al. Synthesis of a novel water-soluble polyazobenzene dendrimer and photoregulation of affinity toward DNA[J]. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 2006, 345(1): 227-232.

[25] Huang C Q, Wang Y, Hong C Y, et al. Spiropyran-based polymeric vesicles: Preparation and photochromic properties[J]. Macromolecular Rapid Communications, 2011, 32(15): 1174-1179.

[26] Wang N, Li Y M, Zhang Y Y, et al. High-strength photoresponsive hydrogels enable surface-mediated gene delivery and light-induced reversible cell adhesion/detachment[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2014, 30(39): 11823-11832.

[27] Yan B, He J, Ayotte P, et al. Optically triggered dissociation of kinetically stabilized block copolymer vesicles in aqueous solution[J]. Macromolecular Rapid Communications, 2011, 32(13): 972-976.

[28] Chen Z, He Y N, Wang Y N, et al. Amphiphilic diblock copolymer with dithienylethene pendants: synthesis and photo-modulated self-assembly[J]. Macromolecular Rapid Communications, 2011, 32(13): 977-982.

[29] Lim S J, Carling C J, Warford C C, et al. Multifunctional photo- and thermo-responsive copolymer nanoparticles[J]. Dyes and Pigments, 2011, 89(3): 230-235.

[30] Menon S, Thekkayil R, Varghese S, et al. Photoresponsive soft materials: Synthesis and photophysical studies of a stilbene-based diblock copolymer[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(23): 5063-5073.

[31] Goodwin A P, Mynar J L, Ma Y Z, et al. Synthetic micelle sensitive to IR light via a two-photon process[J]. Journal of the American Chemical Society, 2005, 127(28): 9952-9953.

[32] Chen C J, Liu G Y, Shi Y T, et al. Biocompatible micelles based on comb-like PEG derivates: Formation, characterization, and photo-responsiveness[J]. Macromolecular Rapid Communications, 2011, 32(14): 1077-1081.

[33] Rwei A Y, Wang W P, Kohane D S. Photoresponsive nanoparticles for drug delivery[J]. Nano Today, 2015, 10(4): 451-467.

[34] de Martimprey H, Vauthier C, Malvy C, et al. . Polymer nanocarriers for the delivery of small fragments of nucleic acids: Oligonucleotides and siRNA[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71(3): 490-504.

[35] Xiong X B, Falamarzian A, Garg S M, et al. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery[J]. Journal of Controlled Release, 2011, 155(2): 248-261.

[36] Greco C T, Muir V G. Epps III T H, et al. Efficient tuning of siRNA dose response by combining mixed polymer nanocarriers with simple kinetic modeling[J]. Acta Biomaterialia, 2017, 50: 407-416.

[37] Kotharangannagari V K, Sánchez-Ferrer A, Ruokolainen J, et al. Photoresponsive reversible aggregation and dissolution of rod-coil polypeptide diblock copolymers[J]. Macromolecules, 2011, 44(12): 4569-4573.

[38] Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery[J]. Advanced Drug Delivery Reviews, 2008, 60(15): 1638-1649.

[39] Menon S, Das S. Photoresponsive self-assembling structures from a pyrene-based triblock copolymer[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(20): 4448-4457.

[40] Xie Z G, Hu X L, Chen X S, et al. A novel biodegradable and light-breakable diblock copolymer micelle for drug delivery[J]. Advanced Engineering Materials, 2009, 11(3): B7-B11.

[41] Babin J, Pelletier M, Lepage M, et al. A new two-photon-sensitive block copolymer nanocarrier[J]. Angewandte Chemie International Edition in English, 2009, 48(18): 3329-3332.

[42] Deng X J, Zheng N, Song Z Y, et al. Trigger-responsive, fast-degradable poly(β-amino ester)s for enhanced DNA unpackaging and reduced toxicity[J]. Biomaterials, 2014, 35(18): 5006-5015.

[43] Fischer W, Quadir M A, Barnard A, et al. Controlled release of DNA from photoresponsive hyperbranched polyglycerols with oligoamine shells[J]. Macromolecular Bioscience, 2011, 11(12): 1736-1746.

[44] Yin L C, Tang H Y, Kim K H, et al. Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: Toward nonviral gene delivery[J]. Angewandte Chemie, 2013, 52(35): 9182-9186.

[45] Yang GB, Liu JJ, Wu YF, et al. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment[J]. Coordination Chemistry Reviews, 2016, 320/321: 100- 117.

[46] Weisslederr R. A clearer vision for in vivo imaging[J]. Nature Biotechnology, 2001, 19(4): 316-317.

[47] Lee S E, Liu G L, Kim F, et al. Remote optical switch for localized and selective control of gene interference[J]. Nano Letters, 2009, 9(2): 562-570.

[48] Braun G B, Pallaoro A, Wu G H, et al. Laser-activated gene silencing via gold nanoshell-siRNA conjugates[J]. ACS Nano, 2009, 3(7): 2007-2015.

[49] Chang Y T, Liao P Y, Sheu H S, et al. Near-infrared light-responsive intracellular drug and siRNA release using au nanoensembles with oligonucleotide-capped silica shell[J]. Advanced Materials, 2012, 24(25): 3309-3314.

[50] Lin Q N, Huang Q, Li C Y, et al. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process[J]. Journal of the American Chemical Society, 2010, 132(31): 10645-10647.

[51] Chen C C, Lin Y P, Wang C W, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation[J]. Journal of the American Chemical Society, 2006, 128(11): 3709-3715.

[52] Wijaya A, Schaffer S B, Pallares I G, et al. Selective release of multiple DNA oligonucleotides from gold nanorods[J]. ACS Nano, 2009, 3(1): 80-86.

[53] 巩小萌, 邹业国, 赵秋爽, 等. Er 3+、Y 3+ 掺杂浓度对BaxNayYzF2x+y+3z+3m∶E rm3+[J]. 中国激光, 2017, 44(10): 1003004.

    Gong X M, Zou Y G, Zhao Q S, et al. Influence of doping concentration of Er 3+and Y 3+ on up-conversion luminescence property of BaxNayYzF2x+y+3z+3m∶E rm3+[J]. Chinese Journal of Lasers, 2017, 44(10): 1003004.

[54] Chen S, Gao Y J, Cao Z Q, et al. Nanocomposites of spiropyran-functionalized polymers and upconversion nanoparticles for controlled release stimulated by near-infrared light and pH[J]. Macromolecules, 2016, 49(19): 7490-7496.

[55] Wang F, Banerjee D, Liu Y S, et al. Upconversion nanoparticles in biological labeling, imaging, and therapy[J]. The Analyst, 2010, 135(8): 1839-1854.

[56] Jayakumar M K G, Idris N M, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers[J]. Proceedings of the National Academy of Sciences, 2012, 109(22): 8483-8488.

[57] Yang Y M, Liu F, Liu X G, et al. NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles[J]. Nanoscale, 2012, 5(1): 231-238.

[58] 崔权, 陈忠云, 张智红, 等. 多色双光子成像技术进展[J]. 激光与光电子学进展, 2017, 54(6): 060002.

    Cui Q, Chen Z Y, Zhang Z H, et al. Recent advances in multicolor two-photon imaging technique[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060002.

[59] Wang L Q, Wang X Y, Bhirde A, et al. Carbon-dot-based two-photon visible nanocarriers for safe and highly efficient delivery of siRNA and DNA[J]. Advanced Healthcare Materials, 2014, 3(8): 1203-1209.

[60] Jiang J Q, Tong X, Morris D, et al. Toward photocontrolled release using light-dissociable block copolymer micelles[J]. Macromolecules, 2006, 39(13): 4633-4640.

[61] Mynar J L, Goodwin A P, Cohen J A, et al. Two-photon degradable supramolecular assemblies of linear-dendritic copolymers[J]. Chemical Communications, 2007, 20: 2081-2082.

李炯, 刘小龙, 吴名. 光响应纳米基因载体的研究进展[J]. 中国激光, 2018, 45(3): 0307004. Li Jiong, Liu Xiaolong, Wu Ming. Research Progress of Photo-Responsive Nano-Carrier for Gene[J]. Chinese Journal of Lasers, 2018, 45(3): 0307004.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!