Photonics Research, 2020, 8 (11): 11001671, Published Online: Oct. 10, 2020   

Efficient emission of InGaN-based light-emitting diodes: toward orange and red Download: 923次

Author Affiliations
National Institute of LED on Silicon Substrate, Nanchang University, Nanchang 330096, China
Copy Citation Text

Shengnan Zhang, Jianli Zhang, Jiangdong Gao, Xiaolan Wang, Changda Zheng, Meng Zhang, Xiaoming Wu, Longquan Xu, Jie Ding, Zhijue Quan, Fengyi Jiang. Efficient emission of InGaN-based light-emitting diodes: toward orange and red[J]. Photonics Research, 2020, 8(11): 11001671.

References

[1] H. Y. Lan, I. C. Tseng, Y. H. Lin, G. R. Lin, D. W. Huang, C. H. Wu. High-speed integrated micro-LED array for visible light communication. Opt. Lett., 2020, 45: 2203-2206.

[2] J. Y. Lin, H. X. Jiang. Development of microLED. Appl. Phys. Lett., 2020, 116: 100502.

[3] M. S. Wong, S. Nakamura, S. P. DenBaars. Review—progress in high performance III-nitride micro-light-emitting diodes. ECS J. Solid State Sci. Technol., 2020, 9: 015012.

[4] T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. Huang Chen, W. Guo, H. C. Kuo, Z. Chen. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci., 2018, 8: 1557.

[5] K. A. Bulashevich, S. Y. Karpov. Impact of surface recombination on efficiency of III-nitride light-emitting diodes. Phys. Status Solidi (RRL), 2016, 10: 480-484.

[6] P. Royo, R. P. Stanley, M. Ilegems, K. Streubel, K. H. Gulden. Experimental determination of the internal quantum efficiency of AlGaInP microcavity light-emitting diodes. J. Appl. Phys., 2002, 91: 2563-2568.

[7] M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C. C. Cheng, A. Scherer, R. Bhat, M. Krames. Surface recombination measurements on III–V candidate materials for nanostructure light-emitting diodes. J. Appl. Phys., 2000, 87: 3497-3504.

[8] AdachiS., “Elastic properties,” in Properties of Group‐IV, III‐V and II‐VI Semiconductors, CapperP.KasapS.WilloughbyA., eds. (Wiley, 2005), pp. 4172.

[9] PattisonM.HansenM.BardsleyN.ElliottC.LeeK.PattisonL.TsaoJ., “2019 solid-state lighting R&D opportunities,” in DOE BTO SSL Program (US Department of Energy, 2020), pp. 1120.

[10] P. Dalapati, N. B. Manik, A. N. Basu. Influence of temperature on the performance of high power AlGaInP based red light emitting diode. Opt. Quantum Electron., 2015, 47: 1227-1238.

[11] B. Damilano, B. Gil. Yellow-red emission from (Ga, In)N heterostructures. J. Phys. D, 2015, 48: 403001.

[12] K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, M. Deura. 740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE. J. Cryst. Growth, 2012, 343: 13-16.

[13] M. S. Wong, C. Lee, D. J. Myers, D. Hwang, J. A. Kearns, T. Li, J. S. Speck, S. Nakamura, S. P. DenBaars. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl. Phys. Express, 2019, 12: 097004.

[14] J. T. Oh, S. Y. Lee, Y. T. Moon, J. H. Moon, S. Park, K. Y. Hong, K. Y. Song, C. Oh, J. I. Shim, H. H. Jeong, J. O. Song, H. Amano, T. Y. Seong. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express, 2018, 26: 11194-11200.

[15] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, S. P. DenBaars. Sustained high external quantum efficiency in ultrasmall blue III-nitride micro-LEDs. Appl. Phys. Express, 2017, 10: 032101.

[16] A. David, N. G. Young, C. A. Hurni, M. D. Craven. Quantum efficiency of III-nitride emitters: evidence for defect-assisted nonradiative recombination and its effect on the green gap. Phys. Rev. Appl., 2019, 11: 031001.

[17] W. Liu, D. Zhao, D. Jiang, P. Chen, Z. Liu, J. Zhu, X. Li, F. Liang, J. Liu, L. Zhang, H. Yang, Y. Zhang, G. Du. Shockley-Read-Hall recombination and efficiency droop in InGaN/GaN multiple-quantum-well green light-emitting diodes. J. Phys. D, 2016, 49: 145104.

[18] L. Y. Kuritzky, A. C. Espenlaub, B. P. Yonkee, C. D. Pynn, S. P. DenBaars, S. Nakamura, C. Weisbuch, J. S. Speck. High wall-plug efficiency blue III-nitride LEDs designed for low current density operation. Opt. Express, 2017, 25: 30696-30707.

[19] Q. Lv, J. Liu, C. Mo, J. Zhang, X. Wu, Q. Wu, F. Jiang. Realization of highly efficient InGaN Green LEDs with sandwich-like multiple quantum well structure: role of enhanced interwell carrier transport. ACS Photon., 2019, 6: 130-138.

[20] Z. Zhuang, D. Iida, P. Kirilenko, M. Velazquez-Rizo, K. Ohkawa. Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes. Opt. Express, 2020, 28: 12311-12321.

[21] D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, K. Ohkawa. Demonstration of low forward voltage InGaN-based red LEDs. Appl. Phys. Express, 2020, 13: 031001.

[22] K. Ohkawa, F. Ichinohe, T. Watanabe, K. Nakamura, D. Iida. Metalorganic vapor-phase epitaxial growth simulation to realize high-quality and high-In-content InGaN alloys. J. Cryst. Growth, 2019, 512: 69-73.

[23] D. Iida, K. Niwa, S. Kamiyama, K. Ohkawa. Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure. Appl. Phys. Express, 2016, 9: 111003.

[24] J. I. Hwang, R. Hashimoto, S. Saito, S. Nunoue. Development of InGaN-based red LED grown on (0001) polar surface. Appl. Phys. Express, 2014, 7: 071003.

[25] M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai. Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates. Jpn. J. Appl. Phys., 2006, 45: L659-L662.

[26] S. Nakamura, M. Senoh, N. Iwasa, S. I. Nagahama. High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures. Jpn. J. Appl. Phys., 1995, 34: L797-L799.

[27] F. Jiang, J. Zhang, L. Xu, J. Ding, G. Wang, X. Wu, X. Wang, C. Mo, Z. Quan, X. Guo, C. Zheng, S. Pan, J. Liu. Efficient InGaN-based yellow-light-emitting diodes. Photon. Res., 2019, 7: 144-148.

[28] JiangF. Y.PuY., “Bilayer inlet gas spray nozzle in use for metal-organic chemical vapor deposition device,” China patentZL200410017471.X (1April, 2004).

[29] J. D. Gao, J. L. Zhang, Z. J. Quan, S. Pan, J. L. Liu, F. Y. Jiang. Effect of horizontal p-n junction on optoelectronics characteristics in InGaN-based light-emitting diodes with V-shaped pits. J. Phys. D., 2020, 53: 335103.

[30] C. K. Li, C. K. Wu, C. C. Hsu, L. S. Lu, H. Li, T. C. Lu, Y. R. Wu. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits. AIP Adv., 2016, 6: 055208.

[31] Y. Li, F. Yun, X. Su, S. Liu, W. Ding, X. Hou. Deep hole injection assisted by large V-shape pits in InGaN/GaN multiple-quantum-wells blue light-emitting diodes. J. Appl. Phys., 2014, 116: 123101.

[32] T. Egawa, B. A. B. A. Shuhaimi. High performance InGaN LEDs on Si (1 1 1) substrates grown by MOCVD. J. Phys. D, 2010, 43: 354008.

[33] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, P. Hinze. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. Phys. Rev. Lett., 2005, 95: 127402.

[34] JiangF.ZhangJ.SunQ.QuanZ., “GaN LEDs on Si substrate,” in Light-Emitting Diodes: Materials, Processes, Devices and Applications, LiJ.ZhangG. Q., eds. (Springer, 2019), pp. 133170.

[35] J. Liu, F. Feng, Y. Zhou, J. Zhang, F. Jiang. Stability of Al/Ti/Au contacts to N-polar n-GaN of GaN based vertical light emitting diode on silicon substrate. Appl. Phys. Lett., 2011, 99: 111112.

[36] F. Y. Jiang, J. L. Liu, J. L. Zhang, L. Q. Xu, J. Ding, G. X. Wang, Z. J. Quan, X. M. Wu, P. Zhao, B. Y. Liu, D. Li, X. L. Wang, C. D. Zheng, S. Pan, F. Fang, C. L. Mo. Semiconductor yellow light-emitting diodes. Acta Phys. Sin., 2019, 68: 168503.

[37] ShimJ. I., “Internal quantum efficiency,” in III-Nitride Based Light Emitting Diodes and Applications, SeongT. Y.HanJ.AmanoH.MorkoçH., eds., 2nd ed. (Springer, 2017), pp. 163207.

[38] K. G. Belyaev, M. V. Rakhlin, V. N. Jmerik, A. M. Mizerov, Y. V. Kuznetsova, M. V. Zamoryanskaya, S. V. Ivanov, A. A. Toropov. Phase separation in InxGa1-xN (0.10 < x < 0.40). Phys. Status Solidi C, 2013, 10: 527-531.

[39] T. Hikosaka, T. Shioda, Y. Harada, K. Tachibana, N. Sugiyama, S. Y. Nunoue. Impact of InGaN growth conditions on structural stability under high temperature process in InGaN/GaN multiple quantum wells. Phys. Status Solidi C, 2011, 8: 2016-2018.

[40] K. A. Bulashevich, O. V. Khokhlev, I. Y. Evstratov, S. Karpov. Simulation of light-emitting diodes for new physics understanding and device design. Proc. SPIE, 2012, 8278: 827819.

Shengnan Zhang, Jianli Zhang, Jiangdong Gao, Xiaolan Wang, Changda Zheng, Meng Zhang, Xiaoming Wu, Longquan Xu, Jie Ding, Zhijue Quan, Fengyi Jiang. Efficient emission of InGaN-based light-emitting diodes: toward orange and red[J]. Photonics Research, 2020, 8(11): 11001671.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!