光电工程, 2018, 45 (2): 170616, 网络出版: 2018-05-03  

大气湍流畸变波前斜率的稀疏分解

Sparse decomposition of atmospheric turbulence wavefront gradient
作者单位
1 太原理工大学物理与光电工程学院,山西 太原 030024
2 太原理工大学信息工程学院,山西 太原 030024
摘要
利用压缩感知技术对大气湍流波前探测数据进行压缩,可使测量数据量大幅度减少,能有效降低数据的传输与存储压力,有利于湍流波前的实时测量;但压缩条件要求波前信号是稀疏的或在某个变换域内能够稀疏表示。本文对大气湍流波前斜率信号的稀疏性进行了初步研究,基于大气湍流的统计特性,在频域内对湍流功率谱作黄金分割采样(GS),建立符合大气湍流斜率物理特征的稀疏基,明确了湍流波前斜率的稀疏性。利用该GS 稀疏基对波前斜率进行稀疏分解,并通过仿真实验对比了不同稀疏基对波前斜率的稀疏分解效果。在此基础上,以GS 基作为训练基的初始化字典,进行K 奇异值分解字典训练(KSVD),得到训练基(KSVD-GS),分析了该训练基对波前斜率信号的稀疏表示性能。本文验证了波前斜率能够稀疏分解,建立了一个较好的稀疏基,为压缩感知的应用提供了前提基础。
Abstract
Using compressive sensing technology in atmospheric turbulent wavefront detected data compression can greatly reduce the amount of measured data, can effectively reduce the pressure of data transmission and storage, which is good for real-time measurement of turbulent wavefront. However, the wavefront signal is required to be sparse or can be sparsely represented in one transform domain. In this paper, a preliminary study of the sparsity of the atmospheric turbulent wavefront gradient signal is carried out. Based on the statistical characteristics of atmospheric turbulence, the golden section (GS) is used to make the turbulent power spectrum in the frequency domain, and the sparse basis is established to meet the physical characteristics of the turbulent gradient, then the sparsity of the gradient of the turbulent wavefront is clarified. The sparse decomposition of the wavefront gradient is simulated by using the GS sparse base, and the sparse decomposition effect of different sparsity bases on the wavefront gradient is compared. On this basis, using the GS basis as the initialization training dictionary, K singular value decomposition (KSVD) dictionary training is carried out to get the training base (KSVD-GS), and then the sparse representation performance of this training base to the wavefront gradient signal is analyzed. This paper verifies that the wavefront gradient can be sparsely decomposed and build a better sparse basis, and provides the precondition for the application of compressive sensing.
参考文献

[1] 鲜浩. 自适应光学系统波前传感器设计与优化[D]. 成都: 电子科技大学, 2008.

    Xian H. Design and optimization of wavefront sensor for adaptive optics system[D]. Chengdu: University of Electronic Science and Technology of China, 2008.

[2] 曹召良, 穆全全, 徐焕宇, 等. 开环液晶自适应光学系统: 研究进 展和结果(英文)[J]. 红外与激光工程, 2016, 45(4): 0402002.

    Cao Z L, Mu Q Q, Xu H Y, et al. Open loop liquid crystal adaptive optics systems: progresses and results[J]. Infrared and Laser Engineering, 2016, 45(4): 0402002.

[3] 陆长明, 饶长辉, 黄惠明, 等. 天文学自适应光学成像望远镜的 模拟[J]. 光电工程, 2006, 33(1): 20–23.

    Lu C M, Rao C H, Huang H M, et al. Simulation of an astronomical adaptive optics imaging telescope[J]. Opto-Electronic Engineering, 2006, 33(1): 20–23.

[4] 蒋志凌. 哈特曼波前传感器特性和应用研究[D]. 武汉:武汉物理与数学研究所, 2005.

    Jiang Z L. Study on characteristics and applications of Hartmann wavefront sensor[D]. Wuhan: Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences, 2005.

[5] Rostami M, Michailovich O, Wang Z. Image Deblurring using derivative compressed sensing for optical imaging application[ J]. IEEE Transactions on Image Processing, 2012, 21(7): 3139–3149.

[6] Polans J, Mcnabb R P, Izatt J A, et al. Compressed wavefront sensing[J]. Optics Letters, 2014, 39(5): 1189–1192.

[7] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509.

[8] 管蓉. 基于压缩感知的图像稀疏表示方法[D]. 太原: 中北大学, 2012.

    Guan R. The sparse representation method based on compressed sensing[D]. Taiyuan: North University of China, 2012.

[9] 徐勇峻. 基于信号稀疏表示的字典设计[D]. 南京: 南京理工大学, 2013.

    Xu Y J. Dictionary design based on sparse representation of signals[D]. Nanjing: Nanjing University of Science and Technology, 2013.

[10] 吕方旭, 张金成, 王泉, 等. 基于傅里叶基的自适应压缩感知重 构算法[J]. 北京航空航天大学学报, 2014, 40(4): 544–550.

    Lv F X, Zhang J C, Wang Q, et al. Adaptive recovery algorithm for compressive sensing based on Fourier basis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4): 544–550.

[11] 刘丹华. 信号稀疏分解及压缩感知理论应用研究[D]. 西安: 西安电子科技大学, 2009.

    Liu D H. Research on sparse signal decomposition and compressed sensing theory[D]. Xi’an: Xidian University, 2009.

[12] 尹航, 宋新, 闫野. 星图的稀疏表示性能[J]. 光学 精密工程, 2015, 23(2): 573–581.

    Yin H, Song X, Yan Y. Performance on sparse representation of star images[J]. Optics and Precision Engineering, 2015, 23(2): 573–581.

[13] 张智露. 室内大气湍流模拟系统的研究[D]. 太原: 太原理工大学, 2017.

    Zhang Z L. Research on the simulation system of indoor atmospheric turbulence[D]. Taiyuan: Taiyuan University of Technology, 2017.

[14] 蔡冬梅, 王昆, 贾鹏, 等. 功率谱反演大气湍流随机相位屏采样 方法的研究[J]. 物理学报, 2014, 63(10): 104217.

    Cai D M, Wang K, Jia P, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Acta Physica Sinica, 2014, 63(10): 104217.

[15] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666.

[16] Jia P, Cai D M, Wang D, et al. Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer[ J]. Monthly Notices of the Royal Astronomical Society, 2015, 447(4): 3467–3474.

[17] 王奇涛, 佟首峰, 徐友会. 采用Zernike 多项式对大气湍流相位 屏的仿真和验证[J]. 红外与激光工程, 2013, 42(7): 1907–1911.

    Wang Q T, Tong S F, Xu Y H. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials[ J]. Infrared and Laser Engineering, 2013, 42(7): 1907–1911.

[18] Zhang Q, Jiang W H, Xu B. Study of Zonal wavefront reconstruction adapting for Hartmann-Shack wavefront sensor[J]. High Power Laser and Particle Beams, 1998, 10(2): 229–233.

[19] Aharon M, Elad M, Bruckstein A. RMK-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[ J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322.

李娟娟, 蔡冬梅, 贾鹏, 李灿. 大气湍流畸变波前斜率的稀疏分解[J]. 光电工程, 2018, 45(2): 170616. Li Juanjuan, Cai Dongmei, Jia Peng, Li Can. Sparse decomposition of atmospheric turbulence wavefront gradient[J]. Opto-Electronic Engineering, 2018, 45(2): 170616.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!