光子学报, 2015, 44 (4): 0406005, 网络出版: 2015-04-28   

单模与多模光纤级联型压力传感器

Pressure Sensor Based on Cascading Single Mode Fiber with Multimode Fiber
作者单位
燕山大学 信息科学与工程学院 河北省特种光纤与光纤传感重点实验室, 河北 秦皇岛 066004
摘要
研制了一种基于单模光纤与多模光纤级联结构的马赫-曾德尔干涉型压力传感器, 它通过将一段单模光纤夹熔在两段多模光纤之间制成.利用纤芯的不匹配所激发的单模光纤中纤芯模和包层模之间的干涉, 使外界压力的变化直接作用于单模光纤内部光场, 获得较高灵敏度.当传感器总长度为39 mm时, 可获得较为理想的传输谱线.压力传感实验表明: 随着压力的增大, 传输光谱向长波方向漂移, 在2~16N的压力范围内, 传感器的压力灵敏度为554.830 pm/N, 线性度为0.984, 具有结构简单、易于制造、成本较低、灵敏度高等优点, 可用于不同领域的压力传感.
Abstract
A novel Mach-Zehnder interferometer pressure sensor was proposed by cascading single mode fiber with multimode fiber. It was fabricated by just splicing a single mode fiber with two short section of multimode fibers. The core-cladding modes interference of the single mode fiber was obtained due to the core mismatch, which made the change of outside pressure more directly acted on the light field inside of the single mode fiber, so a high pressure sensitivity can be achieved. In order to obtain a well-defined interference pattern, the length of the sensor was defined as 39 mm after many experiments. The experimental results show that with the increasing of the pressure, the transmission spectrum of the sensor appears red shift phenomenon obviously, the pressure sensitivity of the sensor is 554.830 pm/N and the linearity is 0.984 in the range of 2~16N pressure changes. The sensor has advantages such as simple structure, easy manufacturing, low cost, high sensitivity and so on, it can be well applied to pressure sensing field.
参考文献

[1] GAIZKA D, MARLENE K, MICHAEL L, et al. Use of a novel fiber optical strain sensor for monitoring the vertical deflection of an aircraft Flap[J]. IEEE Sensors Journal, 2009, 9(10): 1219-1225.

[2] MOKHTAR M R, OWENS K, KWASNY J, et al. Fiber-optic strain sensor system with temperature compensation for arch bridge condition monitoring[J]. IEEE Sensors Journal, 2012, 12(5): 1470-1476.

[3] CHAVKO M, KOLLER W A, PRUSACZYK K W, et al. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain[J]. Journal of Neuroscience Methods, 2007, 159(2): 277-281.

[4] 兰玉文, 刘波, 罗建花. 光纤光栅三维应力传感器的设计与实现[J]. 光子学报, 2009, 38(3): 656-659.

    LAN Yu-wen, LIU Bo, LUO Jian-hua. 3-Dimensional Strain Sensor in Fiber Bragg Grating[J]. Acta Photonica Sinica, 2009, 38(3): 656-659.

[5] 刘钦朋, 乔学光, 贾振安, 等. 双悬臂梁光纤Bragg光栅应力传感器[J]. 光子学报, 2007, 36(9): 1645-1647.

    LIU Qin-peng, QIAO Xue-guang, JIA Zhen-an, et al. FBG sensor for stress based on double cantilever beam[J]. Acta Photonica Sinica, 2007, 36(9): 1645-1647.

[6] 谢剑锋, 王颖, 莫钊, 等. 基于应力分析的电镀保护光纤布喇格光栅传感性能分析[J]. 光子学报, 2014, 43(9): 0906002.

    XIE Jian-feng, WANG Ying, MO Zhao, et al. Sensing properties of nickel electroplating protected Fiber Bragg Grating based on stress analysis[J]. Acta Photonica Sinica, 2014, 43(9): 0906002.

[7] FAN X Y, HE Z Y, KAZUO H. Novel strain- and temperature-sensing mechanism based on dynamic grating in polarization-maintaining erbium-doped fiber[J]. Optics Express, 2006, 14(2): 556-561.

[8] TIAN Z B, SCOTT S H Y. In-line abrupt taper optical fiber Mach-Zehnder interferometric strain sensor[J]. IEEE Photonics Technology Letters, 2009, 21(3): 161-163.

[9] GONG Y, RAO Y J, GUO Y, et al. Temperature-insensitive micro Fabry-Perot strain sensor fabricated by chemically etching Er-doped Fiber[J]. IEEE Photonics Technology Letters, 2009, 21(22): 1725-1727.

[10] 江小峰, 林春, 谢海鹤, 等. 白光干涉解调光纤MEMS压力传感器[J]. 光子学报, 2014, 43(10): 1006003.

    JIANG Xiao-feng, LIN Chun, XIE Hai-he, et al. Optic fiber MEMS pressure sensor based on white light interferometry[J]. Acta Photonica Sinica, 2014, 43(10): 1006003.

[11] GONG H P, CHAN C C, CHEN LH, et al. Strain sensor realized by using low-birefringence photonic-crystal-fiber-based Sagnac loop[J]. IEEE Photonics Technology Letters, 2010, 22(16): 1238-1240.

[12] FU H Y, TAM H Y, SHAO L Y, et al. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer[J]. Applied Optics, 2008, 47(15): 2835-2839.

[13] 吕安强, 李永倩, 李静, 等. 分布式传感光纤应变和温度同时标定方法[J]. 光子学报, 2014, 43(12): 1206002.

    LV An-qiang, LI Yong-qian, LI Jing, et al. Simultaneous calibration method for strain and temperature of distributed sensing optical fibers[J]. Acta Photonica Sinica, 2014, 43(12): 1206002.

[14] CHIANG C C, CHEN Z J. A novel optical fiber magnetic sensor based on electroforming long-period fiber grating[J]. Journal of Lingtwave Technology, 2014, 32(19): 3331-3336.

[15] SUN H, YANG S, ZHANG J, et al. Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure[J]. Optic Fiber Technology, 2012, 18(6): 425-429.

[16] NGUYEN L V, HWANG D, MOON S, et al. High temperature fiber sensor with high sensitivity based on core diameter mismatch[J]. Optic Express, 2008, 16(15): 11369-11375.

[17] MANOJ K, ARUN K, SAURABH M T. A comparison of temperature sensing characteristics of SMS structures using step and graded index multimode fibers[J]. Optics Communications, 2014, 312: 222-226.

[18] LI L C, XIE Z H, LIU D M. All-fiber Mach-Zehnder interferometers for sensing applications[J]. Optics Express, 2012, 20(10): 11109-11120.

付兴虎, 谢海洋, 王柳柳, 付广伟, 毕卫红. 单模与多模光纤级联型压力传感器[J]. 光子学报, 2015, 44(4): 0406005. FU Xing-hu, XIE Hai-yang, WANG Liu-liu, FU Guang-wei, BI Wei-hong. Pressure Sensor Based on Cascading Single Mode Fiber with Multimode Fiber[J]. ACTA PHOTONICA SINICA, 2015, 44(4): 0406005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!