红外与激光工程, 2018, 47 (2): 0230003, 网络出版: 2018-04-26   

空间在轨激光成像雷达指标优选宏模型

Indexes optimization macro model of on-orbit imaging lidar in space
作者单位
1 大连交通大学 机械工程学院, 辽宁 大连116023
2 上海宇航系统工程研究所, 上海201109
摘要
凝视成像激光雷达技术是空间非合作目标位姿测量重要手段。激光雷达指标选取极大影响航天器载荷, 优化选取激光雷达指标, 使之既能满足空间任务需求, 又能有效减少航天器载荷, 减少能源消耗, 意义重大。传统解决此问题的方法是通过经验选取, 激光雷达指标与目标属性相容性宏模型的提出, 可以为激光雷达激光输出功率、分辨率、视场角和测距精度四项指标选取提供理论依据。具体的, 利用目标尺度和雷达目标距离计算雷达分辨率和视场角初值, 对雷达最大可测距离进行迭代求解, 为优化激光雷达发射功率提供依据。充分利用深度共生矩阵二阶参数迭代优化, 确定雷达最优分辨率和视场角。最后, 通过点云配准算法迭代得出测量该目标的合适的测距精度。实验结果表明, 激光雷达宏模型优化选取的雷达指标满足雷达指标选择的需求。
Abstract
The staring imaging lidar, whose indexes selection influences the load of spacecrafts seriously, is an important method for the pose measurement of non-cooperation target in space. Selecting the indexes of lidar reasonable is significant, opposite to the traditional method by experience, making it not only satisfy the demands of space mission, but also effectively reduce the load of spacecrafts and energy consumption. Macro model for compatibility between indexes of on-orbit lidar and attribute of target was proposed to provide a theoretical basis for indexes selection of lidar. Four indexes included lidar output power, lidar resolution, lidar field angle and lidar ranging precision. The processes were as follows. The initial values of the lidar resolution and field angle can be calculated by the scale of the target and distance between lidar and target. The transmitting power can be acquisited by iterating the maximum measurement distance. The reasonable resolution and field angle can be measured by iterating the second order parameters of the target surface depth co-occurrence matrix. The ranging precision of the lidar can be acquired by iterating the result of the point clouds registration algorithm. The experimental result of lidar indexes selection shows that proposed model can satisfy the requirement for the lidar parameters optimal selection.
参考文献

[1] Liang Bin, Gao Xuehai, Pan Le, et al. Formation proximity of GEO non-cooperation target based on PSO multiple impulse guidance law[J]. Journal of Harbin Institute of Technology, 2015, 47(10): 7-12. (in Chinese)

[2] Guo Yulan, Wan Jianwei, Lu Min, et al. Three dimensional orientation estimation for ladar target[J]. Optics and Precision Engineering, 2012, 20(4): 843-850. (in Chinese)

[3] Chen Feng, Zhu Jie, Gu Dongqing, et al. Relative navigation technology of space non-cooperative target based on imaging lidar[J]. Infrared and Laser Engineering, 2016, 45(10): 1030005. (in Chinese)

[4] Hao Gangtao, Du Xiaoping, Zhao Jiping, et al. Relative pose estimation of noncooperative target based on fusion of monocular vision and scannerless 3D LIDAR[J]. Journal of Astronautics, 2015, 36(10): 1178-1186. (in Chinese)

[5] Lin Xiangguo, Zhang Jixian. 3D Pow line reconstruction from airborne lidar point cloud of overhead electric power transmission corridors[J]. Acta Geodaetial et Cartographica Sinica, 2016, 45(3): 347-353. (in Chinese)

[6] Liu Yu, Chen Feng, Wang Ying, et al. Measurement of relative position and pose between two spacecrafts based on laser lidar[J]. Infrared and Laser Engineering, 2016, 45(8): 0817003. (in Chinese)

[7] Zhou Qin, Zhang Xiuda, Hu Jian, et al. Noise analysis of staring three-dimensinal active imaging laser rader[J]. Chinese Journal of Lasers, 2011, 38(9): 0908005. (in Chinese)

[8] Yan Jie, Ruan Youtian, Xue Peiyao. Active and passive optical image fusion technology[J]. Chinese Optics, 2015, 8(3): 378-385. (in Chinese)

[9] Qu Hengkuo, Zhang Qingyuan, Ruan Youtian. Laser radar based on scanning image tracking[J]. Chinese Optics, 2012, 5(3): 242-247. (in Chinese)

[10] Akar O, Gungor O. Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkeyf[J]. International Journal of Remote Sensing, 2015, 36(2): 442-464.

[11] Wang Xin, Zhang Mingming, Yu Xiao, et al. Point cloud registration based on improve iterative closest point method [J]. Optics and Precision Engineering, 2012, 20(9): 2068-2077. (in Chinese)

[12] Shu Rong, Xu Zhihai. Principle of Laser Radar Imaging and Motion Error Compensation Method[M]. Beijing: Science Press, 2014: 10-27. (in Chinese)

李荣华, 温帅方, 肖余之, 李金明. 空间在轨激光成像雷达指标优选宏模型[J]. 红外与激光工程, 2018, 47(2): 0230003. Li Ronghua, Wen Shuaifang, Xiao Yuzhi, Li Jinming. Indexes optimization macro model of on-orbit imaging lidar in space[J]. Infrared and Laser Engineering, 2018, 47(2): 0230003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!